{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,13]],"date-time":"2025-04-13T01:57:13Z","timestamp":1744509433683,"version":"3.37.3"},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Future Generation Computer Systems"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.future.2020.02.018","type":"journal-article","created":{"date-parts":[[2020,2,28]],"date-time":"2020-02-28T07:59:33Z","timestamp":1582876773000},"page":"361-371","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":167,"special_numbering":"C","title":["Q-learning based dynamic task scheduling for energy-efficient cloud computing"],"prefix":"10.1016","volume":"108","author":[{"given":"Ding","family":"Ding","sequence":"first","affiliation":[]},{"given":"Xiaocong","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Yihuan","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Kaixuan","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Qian","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Zeng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.future.2020.02.018_b1","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1145\/1721654.1721672","article-title":"A view of cloud computing","volume":"53","author":"Armbrust","year":"2010","journal-title":"Commun. ACM"},{"year":"2011","series-title":"The NIST Definition of Cloud Computing","author":"Mell","key":"10.1016\/j.future.2020.02.018_b2"},{"year":"2015","series-title":"Distributed Computing, Cloud Computing and Big Data","author":"Lin","key":"10.1016\/j.future.2020.02.018_b3"},{"key":"10.1016\/j.future.2020.02.018_b4","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1007\/s10723-015-9359-2","article-title":"A survey on resource scheduling in cloud computing: issues and challenges","volume":"14","author":"Singh","year":"2016","journal-title":"J. Grid Comput."},{"key":"10.1016\/j.future.2020.02.018_b5","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1016\/j.future.2011.04.017","article-title":"Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing","volume":"28","author":"Beloglazov","year":"2012","journal-title":"Future Gener. Comput. Syst."},{"year":"2015","series-title":"Cloud Computing","author":"Liu","key":"10.1016\/j.future.2020.02.018_b6"},{"key":"10.1016\/j.future.2020.02.018_b7","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1109\/JSEE.2016.00047","article-title":"Resource pre-allocation algorithms for low-energy task scheduling of cloud computing","volume":"27","author":"Xu","year":"2016","journal-title":"J. Syst. Eng. Electron."},{"key":"10.1016\/j.future.2020.02.018_b8","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1111\/itor.12294","article-title":"Multiobjective evolutionary algorithms for energy and service level scheduling in a federation of distributed datacenters","volume":"24","author":"Iturriaga","year":"2016","journal-title":"Int. Trans. Oper. Res."},{"key":"10.1016\/j.future.2020.02.018_b9","doi-asserted-by":"crossref","unstructured":"N. Vasic, D. Novakovic, S. Miucin, D. Kostic, R. Bianchini, Dejavu: accelerating resource allocation in virtualized environments, in: 17th International Conference on Architectural Support for Programming Languages and Operating Systems, 2012, pp. 423\u2013435.","DOI":"10.1145\/2150976.2151021"},{"key":"10.1016\/j.future.2020.02.018_b10","doi-asserted-by":"crossref","unstructured":"M. Dabbagh, B. Hamdaoui, M. Guizani, A. Rayes, Energy-efficient cloud resource management, in: IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS, 2014, pp. 386\u2013391.","DOI":"10.1109\/INFCOMW.2014.6849263"},{"key":"10.1016\/j.future.2020.02.018_b11","doi-asserted-by":"crossref","unstructured":"G. Tesauro, N.K. Jong, R. Das, M.N. Bennani, A hybrid reinforcement learning approach to autonomic resource allocation, in: 3rd International Conference on Autonomic Computing, 2006, pp. 65\u201373.","DOI":"10.1007\/s10586-007-0035-6"},{"key":"10.1016\/j.future.2020.02.018_b12","doi-asserted-by":"crossref","unstructured":"M. Hussin, Y.C. Lee, A.Y. Zomaya, Efficient energy management using adaptive reinforcement learning-based scheduling in large-scale distributed systems, in: International Conference on Parallel Processing, 2011, pp. 385\u2013393.","DOI":"10.1109\/ICPP.2011.18"},{"key":"10.1016\/j.future.2020.02.018_b13","doi-asserted-by":"crossref","unstructured":"F. Farahnakian, P. Liljeberg, J. Plosila, Energy-efficient virtual machines consolidation in cloud data centers using reinforcement learning, in: Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, 2014, pp. 500\u2013507.","DOI":"10.1109\/PDP.2014.109"},{"key":"10.1016\/j.future.2020.02.018_b14","doi-asserted-by":"crossref","unstructured":"X. Lin, Y. Wang, M. Pedram, A reinforcement learning-based power management framework for green computing data centers, in: International Conference on Cloud Engineering, 2016, pp. 135\u2013138.","DOI":"10.1109\/IC2E.2016.33"},{"key":"10.1016\/j.future.2020.02.018_b15","doi-asserted-by":"crossref","unstructured":"N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, Y. Wang, A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning, in: International Conference on Distributed Computing Systems, 2017, pp. 372\u2013382.","DOI":"10.1109\/ICDCS.2017.123"},{"key":"10.1016\/j.future.2020.02.018_b16","unstructured":"H. Chen, S. Li, A queueing-based model for performance management on cloud, in: 6th International Conference on Advanced Information Management and Service, 2011, pp. 83\u201388."},{"key":"10.1016\/j.future.2020.02.018_b17","doi-asserted-by":"crossref","first-page":"266","DOI":"10.3724\/SP.J.1001.2012.04143","article-title":"Policy of energy optimal management for cloud computing platform with stochastic tasks","volume":"23","author":"Tan","year":"2012","journal-title":"J. Softw."},{"key":"10.1016\/j.future.2020.02.018_b18","unstructured":"J. Jiang, J. Lu, G. Zhang, G. Long, Optimal cloud resource auto-scaling for web applications, in: IEEE\/ACM International Symposium on Cluster, Cloud and Grid Computing, 2013, pp. 58\u201365."},{"key":"10.1016\/j.future.2020.02.018_b19","doi-asserted-by":"crossref","first-page":"936","DOI":"10.1109\/TPDS.2011.199","article-title":"Performance analysis of cloud computing centers using m\/g\/m\/m+r queuing systems","volume":"23","author":"Khazaei","year":"2012","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.future.2020.02.018_b20","doi-asserted-by":"crossref","unstructured":"D. Liao, K. Li, G. Sun, V. Anand, Y. Gong, Z. Tan, Energy and performance management in large data centers: a queuing theory perspective, in: International Conference on Computing, Networking and Communications, 2015, pp. 287\u2013291.","DOI":"10.1109\/ICCNC.2015.7069356"},{"key":"10.1016\/j.future.2020.02.018_b21","first-page":"6569","article-title":"An energy-saving strategy based on multi-server vacation queuing theory in cloud data center","volume":"74","author":"Yin","year":"2018","journal-title":"J. Supercomput."},{"key":"10.1016\/j.future.2020.02.018_b22","doi-asserted-by":"crossref","first-page":"1595","DOI":"10.1007\/s10586-015-0484-2","article-title":"Random task scheduling scheme based on reinforcement learning in cloud computing","volume":"18","author":"Peng","year":"2015","journal-title":"Cluster Comput."},{"key":"10.1016\/j.future.2020.02.018_b23","doi-asserted-by":"crossref","first-page":"6569","DOI":"10.1007\/s11227-017-2154-z","article-title":"Energy management strategy in cloud computing: a perspective study","volume":"74","author":"Chaabouni","year":"2018","journal-title":"J. Supercomput."},{"key":"10.1016\/j.future.2020.02.018_b24","doi-asserted-by":"crossref","first-page":"940","DOI":"10.1016\/j.future.2016.11.034","article-title":"Experimental and quantitative analysis of server power model for cloud data centers","volume":"86","author":"Lin","year":"2018","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.future.2020.02.018_b25","series-title":"Advances in Computers, vol. 82","first-page":"47","article-title":"A taxonomy and survey of energy-efficient data centers and cloud computing systems","author":"Beloglazov","year":"2010"},{"year":"2014","series-title":"Operational Research Foundation and Application","author":"Hu","key":"10.1016\/j.future.2020.02.018_b26"},{"year":"2014","series-title":"Research on Cloud Resource Scheduling Strategy Based on M\/M\/N Queuing Model","author":"You","key":"10.1016\/j.future.2020.02.018_b27"},{"year":"1998","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","key":"10.1016\/j.future.2020.02.018_b28"},{"key":"10.1016\/j.future.2020.02.018_b29","first-page":"205","article-title":"A combined frequency scaling and application elasticity approach for energy-efficient cloud computing","volume":"4","author":"Tesfatsion","year":"2014","journal-title":"Sustain. Comput. Inform. Syst."},{"key":"10.1016\/j.future.2020.02.018_b30","first-page":"107","article-title":"Non-liner energy consumption model for cloud computing","volume":"39","author":"Xiao","year":"2016","journal-title":"J. Beijing Univ. Posts Telecommun."},{"key":"10.1016\/j.future.2020.02.018_b31","first-page":"27","article-title":"Comparative analysis of scheduling algorithms of cloudsim in cloud computing","volume":"97","author":"Himani","year":"2014","journal-title":"Int. J. Comput. Appl."},{"key":"10.1016\/j.future.2020.02.018_b32","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1002\/spe.995","article-title":"Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms","volume":"41","author":"Calheiros","year":"2011","journal-title":"Softw. - Pract. Exp."},{"key":"10.1016\/j.future.2020.02.018_b33","doi-asserted-by":"crossref","unstructured":"A. Kontarinis, V. Kantere, N. Koziris, Cloud resource allocation from the user perspective: A bare-bones reinforcement learning approach, in: International Conference on Web Information Systems Engineering, 2016, pp. 457\u2013469.","DOI":"10.1007\/978-3-319-48740-3_34"},{"key":"10.1016\/j.future.2020.02.018_b34","article-title":"A reinforcement learning-based mixed job scheduler scheme for grid or iaas cloud","author":"Cui","year":"2017","journal-title":"IEEE Trans. Cloud Comput."},{"year":"2018","series-title":"Reinforcement-learning-based foresighted task scheduling in cloud computing","author":"Mostafavi","key":"10.1016\/j.future.2020.02.018_b35"}],"container-title":["Future Generation Computer Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X19313858?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167739X19313858?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,18]],"date-time":"2021-04-18T07:18:59Z","timestamp":1618730339000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167739X19313858"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":35,"alternative-id":["S0167739X19313858"],"URL":"https:\/\/doi.org\/10.1016\/j.future.2020.02.018","relation":{},"ISSN":["0167-739X"],"issn-type":[{"type":"print","value":"0167-739X"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Q-learning based dynamic task scheduling for energy-efficient cloud computing","name":"articletitle","label":"Article Title"},{"value":"Future Generation Computer Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.future.2020.02.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}