{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T22:25:20Z","timestamp":1719959120251},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,22]],"date-time":"2023-05-22T00:00:00Z","timestamp":1684713600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Fuzzy Sets and Systems"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.fss.2023.108590","type":"journal-article","created":{"date-parts":[[2023,5,23]],"date-time":"2023-05-23T20:02:35Z","timestamp":1684872155000},"page":"108590","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Two novel distances for ordinal time series and their application to fuzzy clustering"],"prefix":"10.1016","volume":"468","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1456-7342","authenticated-orcid":false,"given":"\u00c1ngel","family":"L\u00f3pez-Oriona","sequence":"first","affiliation":[]},{"given":"Christian H.","family":"Wei\u00df","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5494-171X","authenticated-orcid":false,"given":"Jos\u00e9 A.","family":"Vilar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.fss.2023.108590_br0010","doi-asserted-by":"crossref","first-page":"1857","DOI":"10.1016\/j.patcog.2005.01.025","article-title":"Clustering of time series data\u2014a survey","volume":"38","author":"Liao","year":"2005","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.fss.2023.108590_br0020","first-page":"16","article-title":"Time-series clustering\u2014a decade review","volume":"53","author":"Aghabozorgi","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.fss.2023.108590_br0030","series-title":"Time Series Clustering and Classification","author":"Maharaj","year":"2019"},{"key":"10.1016\/j.fss.2023.108590_br0040","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.engappai.2014.12.015","article-title":"Fuzzy clustering of time series data using dynamic time warping distance","volume":"39","author":"Izakian","year":"2015","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.fss.2023.108590_br0050","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.eswa.2016.06.012","article-title":"Hierarchical clustering of time series data with parametric derivative dynamic time warping","volume":"62","author":"\u0141uczak","year":"2016","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.fss.2023.108590_br0060","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1007\/s10479-019-03284-1","article-title":"Trimmed fuzzy clustering of financial time series based on dynamic time warping","volume":"299","author":"D'Urso","year":"2021","journal-title":"Ann. Oper. Res."},{"issue":"1","key":"10.1016\/j.fss.2023.108590_br0070","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1198\/073500107000000106","article-title":"Model-based clustering of multiple time series","volume":"26","author":"Fr\u00f6hwirth-Schnatter","year":"2008","journal-title":"J. Bus. Econ. Stat."},{"issue":"4","key":"10.1016\/j.fss.2023.108590_br0080","doi-asserted-by":"crossref","first-page":"1860","DOI":"10.1016\/j.csda.2007.06.001","article-title":"Time series clustering and classification by the autoregressive metric","volume":"52","author":"Corduas","year":"2008","journal-title":"Comput. Stat. Data Anal."},{"issue":"1","key":"10.1016\/j.fss.2023.108590_br0090","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s00500-012-0905-6","article-title":"Autoregressive model-based fuzzy clustering and its application for detecting information redundancy in air pollution monitoring networks","volume":"17","author":"D'Urso","year":"2013","journal-title":"Soft Comput."},{"key":"10.1016\/j.fss.2023.108590_br0100","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2016.01.010","article-title":"GARCH-based robust clustering of time series","volume":"305","author":"D'Urso","year":"2016","journal-title":"Fuzzy Sets Syst."},{"issue":"24","key":"10.1016\/j.fss.2023.108590_br0110","doi-asserted-by":"crossref","first-page":"3565","DOI":"10.1016\/j.fss.2009.04.013","article-title":"Autocorrelation-based fuzzy clustering of time series","volume":"160","author":"D'Urso","year":"2009","journal-title":"Fuzzy Sets Syst."},{"issue":"7","key":"10.1016\/j.fss.2023.108590_br0120","doi-asserted-by":"crossref","first-page":"1187","DOI":"10.1016\/j.ins.2010.11.031","article-title":"Fuzzy clustering of time series in the frequency domain","volume":"181","author":"Maharaj","year":"2011","journal-title":"Inf. Sci."},{"key":"10.1016\/j.fss.2023.108590_br0130","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.fss.2011.10.002","article-title":"Wavelets-based clustering of multivariate time series","volume":"193","author":"D'Urso","year":"2012","journal-title":"Fuzzy Sets Syst."},{"issue":"3","key":"10.1016\/j.fss.2023.108590_br0140","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1007\/s11634-015-0208-8","article-title":"Clustering of time series using quantile autocovariances","volume":"10","author":"Lafuente-Rego","year":"2016","journal-title":"Adv. Data Anal. Classif."},{"key":"10.1016\/j.fss.2023.108590_br0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115677","article-title":"Quantile cross-spectral density: a novel and effective tool for clustering multivariate time series","volume":"185","author":"L\u00f3pez-Oriona","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.fss.2023.108590_br0160","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.fss.2022.02.015","article-title":"Quantile-based fuzzy clustering of multivariate time series in the frequency domain","volume":"443","author":"L\u00f3pez-Oriona","year":"2022","journal-title":"Fuzzy Sets Syst."},{"key":"10.1016\/j.fss.2023.108590_br0170","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.ijar.2022.07.010","article-title":"Quantile-based fuzzy C-means clustering of multivariate time series: robust techniques","volume":"150","author":"L\u00f3pez-Oriona","year":"2022","journal-title":"Int. J. Approx. Reason."},{"issue":"8","key":"10.1016\/j.fss.2023.108590_br0180","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1002\/cem.945","article-title":"Clustering multivariate time-series data","volume":"19","author":"Singhal","year":"2005","journal-title":"J. Chemom."},{"key":"10.1016\/j.fss.2023.108590_br0190","series-title":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","first-page":"000241","article-title":"Cross-correlation based clustering and dimension reduction of multivariate time series","author":"Egri","year":"2017"},{"key":"10.1016\/j.fss.2023.108590_br0200","series-title":"2020 25th International Conference on Pattern Recognition (ICPR)","first-page":"5658","article-title":"Improved time-series clustering with UMAP dimension reduction method","author":"Pealat","year":"2021"},{"key":"10.1016\/j.fss.2023.108590_br0210","series-title":"Pattern Recognition with Fuzzy Objective Function Algorithms","author":"Bezdek","year":"1981"},{"key":"10.1016\/j.fss.2023.108590_br0220","series-title":"Algorithms for Fuzzy Clustering, vol. 10","author":"Miyamoto","year":"2008"},{"issue":"3","key":"10.1016\/j.fss.2023.108590_br0230","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2560188","article-title":"Model-based count series clustering for bike sharing system usage mining: a case study with the v\u00e9lib' system of Paris","volume":"5","author":"Etienne","year":"2014","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.fss.2023.108590_br0240","article-title":"INGARCH-based fuzzy clustering of count time series with a football application","volume":"10","author":"Cerqueti","year":"2022","journal-title":"Mach. Learn. Appl."},{"issue":"2","key":"10.1016\/j.fss.2023.108590_br0250","first-page":"345","article-title":"Model-based clustering of categorical time series","volume":"5","author":"Pamminger","year":"2010","journal-title":"Bayesian Anal."},{"issue":"2","key":"10.1016\/j.fss.2023.108590_br0260","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1007\/s10618-014-0357-y","article-title":"A framework for dissimilarity-based partitioning clustering of categorical time series","volume":"29","author":"Garc\u00eda-Magari\u00f1os","year":"2015","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.fss.2023.108590_br0270","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.neucom.2022.04.076","article-title":"nTreeClus: a tree-based sequence encoder for clustering categorical series","volume":"494","author":"Jahanshahi","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.fss.2023.108590_br0280","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1016\/j.ins.2022.12.065","article-title":"Hard and soft clustering of categorical time series based on two novel distances with an application to biological sequences","volume":"624","author":"L\u00f3pez-Oriona","year":"2023","journal-title":"Inf. Sci."},{"key":"10.1016\/j.fss.2023.108590_br0290","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v074.i09","article-title":"ClickClust: an R package for model-based clustering of categorical sequences","volume":"74","author":"Melnykov","year":"2016","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.fss.2023.108590_br0300","series-title":"Package \u2018ClickClust\u2019","author":"Melnykov","year":"2014"},{"issue":"531","key":"10.1016\/j.fss.2023.108590_br0310","doi-asserted-by":"crossref","first-page":"1189","DOI":"10.1080\/01621459.2019.1604370","article-title":"Distance-based analysis of ordinal data and ordinal time series","volume":"115","author":"Wei\u00df","year":"2020","journal-title":"J. Am. Stat. Assoc."},{"issue":"4","key":"10.1016\/j.fss.2023.108590_br0320","doi-asserted-by":"crossref","first-page":"458","DOI":"10.3390\/e22040458","article-title":"Regime-switching discrete ARMA models for categorical time series","volume":"22","author":"Wei\u00df","year":"2020","journal-title":"Entropy"},{"issue":"7","key":"10.1016\/j.fss.2023.108590_br0330","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.1109\/JBHI.2022.3163126","article-title":"Hierarchical denoising of ordinal time series of clinical scores","volume":"26","author":"Koss","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.fss.2023.108590_br0340","series-title":"An Introduction to Discrete-Valued Time Series","author":"Wei\u00df","year":"2018"},{"key":"10.1016\/j.fss.2023.108590_br0350","author":"Lopez-Oriona"},{"key":"10.1016\/j.fss.2023.108590_br0360","author":"Oriona"},{"key":"10.1016\/j.fss.2023.108590_br0370","series-title":"FUZZ-IEEE'99, 1999 IEEE International Fuzzy Systems, Conference Proceedings (Cat. No. 99CH36315), vol. 3","first-page":"1281","article-title":"A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering","author":"Krishnapuram","year":"1999"},{"key":"10.1016\/j.fss.2023.108590_br0380","series-title":"Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition","author":"H\u00f6ppner","year":"1999"},{"key":"10.1016\/j.fss.2023.108590_br0390","series-title":"Finding Groups in Data: An Introduction to Cluster Analysis","author":"Kaufman","year":"2009"},{"issue":"3","key":"10.1016\/j.fss.2023.108590_br0400","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1080\/01969727308546046","article-title":"A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters","volume":"3","author":"Dunn","year":"1973","journal-title":"J. Cybern."},{"issue":"03","key":"10.1016\/j.fss.2023.108590_br0410","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1142\/S0218488504002849","article-title":"Fuzzy c-means clustering models for multivariate time-varying data: different approaches","volume":"12","author":"D'Urso","year":"2004","journal-title":"Int. J. Uncertain. Fuzziness Knowl.-Based Syst."},{"issue":"5","key":"10.1016\/j.fss.2023.108590_br0420","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1109\/TFUZZ.2005.856565","article-title":"Fuzzy clustering for data time arrays with inlier and outlier time trajectories","volume":"13","author":"D'Urso","year":"2005","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"1","key":"10.1016\/j.fss.2023.108590_br0430","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1007\/s00357-010-9043-y","article-title":"A fuzzy clustering model for multivariate spatial time series","volume":"27","author":"Coppi","year":"2010","journal-title":"J. Classif."},{"key":"10.1016\/j.fss.2023.108590_br0440","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.ins.2019.07.100","article-title":"Fuzzy clustering of mixed data","volume":"505","author":"D'Urso","year":"2019","journal-title":"Inf. Sci."},{"issue":"9","key":"10.1016\/j.fss.2023.108590_br0450","doi-asserted-by":"crossref","first-page":"3990","DOI":"10.1109\/TFUZZ.2021.3136005","article-title":"Spatial weighted robust clustering of multivariate time series based on quantile dependence with an application to mobility during COVID-19 pandemic","volume":"30","author":"L\u00f3pez-Oriona","year":"2022","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"5","key":"10.1016\/j.fss.2023.108590_br0460","doi-asserted-by":"crossref","first-page":"4522","DOI":"10.1109\/TSG.2020.2991316","article-title":"Hierarchical clustering for smart meter electricity loads based on quantile autocovariances","volume":"11","author":"Alonso","year":"2020","journal-title":"IEEE Trans. Smart Grid"},{"issue":"4","key":"10.1016\/j.fss.2023.108590_br0470","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1080\/03610920802233937","article-title":"A new class of autoregressive models for time series of binomial counts","volume":"38","author":"Wei\u00df","year":"2009","journal-title":"Commun. Stat., Theory Methods"},{"issue":"2","key":"10.1016\/j.fss.2023.108590_br0480","doi-asserted-by":"crossref","DOI":"10.1515\/ijb-2015-0051","article-title":"A binomial integer-valued ARCH model","volume":"12","author":"Risti\u0107","year":"2016","journal-title":"Int. J. Biostat."},{"issue":"3","key":"10.1016\/j.fss.2023.108590_br0490","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1177\/002224378101800305","article-title":"Overlapping clustering: a new method for product positioning","volume":"18","author":"Arabie","year":"1981","journal-title":"J. Mark. Res."},{"key":"10.1016\/j.fss.2023.108590_br0500","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.fss.2017.03.006","article-title":"Quantile autocovariances: a powerful tool for hard and soft partitional clustering of time series","volume":"340","author":"Vilar","year":"2018","journal-title":"Fuzzy Sets Syst."},{"issue":"7","key":"10.1016\/j.fss.2023.108590_br0510","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1016\/j.patrec.2006.11.010","article-title":"A fuzzy extension of the rand index and other related indexes for clustering and classification assessment","volume":"28","author":"Campello","year":"2007","journal-title":"Pattern Recognit. Lett."},{"issue":"1\u20134","key":"10.1016\/j.fss.2023.108590_br0520","first-page":"261","article-title":"The Wiener RMS (root mean square) error criterion in filter design and prediction","volume":"25","author":"Levinson","year":"1949","journal-title":"J. Math. Phys."},{"issue":"3","key":"10.1016\/j.fss.2023.108590_br0530","doi-asserted-by":"crossref","first-page":"233","DOI":"10.2307\/1401322","article-title":"The fitting of time-series models","volume":"28","author":"Durbin","year":"1960","journal-title":"Rev. Inst. Int. Stat."},{"issue":"08","key":"10.1016\/j.fss.2023.108590_br0540","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1109\/34.85677","article-title":"A validity measure for fuzzy clustering","volume":"13","author":"Xie","year":"1991","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"22","key":"10.1016\/j.fss.2023.108590_br0550","doi-asserted-by":"crossref","first-page":"2176","DOI":"10.1049\/el:19981523","article-title":"Cluster validity index for fuzzy clustering","volume":"34","author":"Kwon","year":"1998","journal-title":"Electron. Lett."},{"key":"10.1016\/j.fss.2023.108590_br0560","series-title":"Proceedings of the 2005 American Control Conference","first-page":"1120","article-title":"Improved validation index for fuzzy clustering","author":"Tang","year":"2005"},{"issue":"2","key":"10.1016\/j.fss.2023.108590_br0570","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1109\/91.493905","article-title":"Validity-guided (re) clustering with applications to image segmentation","volume":"4","author":"Bensaid","year":"1996","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.fss.2023.108590_br0580","series-title":"bayesMCClust: Mixtures-of-Experts Markov Chain Clustering and Dirichlet Multinomial Clustering","author":"Pamminger","year":"2018"},{"key":"10.1016\/j.fss.2023.108590_br0590","series-title":"Austrian Social Security Database","author":"Zweim\u00fcller","year":"2009"},{"key":"10.1016\/j.fss.2023.108590_br0600","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"J. Classif."},{"issue":"6","key":"10.1016\/j.fss.2023.108590_br0610","doi-asserted-by":"crossref","first-page":"2393","DOI":"10.1007\/s00362-018-1053-6","article-title":"Robust fuzzy clustering based on quantile autocovariances","volume":"61","author":"Lafuente-Rego","year":"2020","journal-title":"Stat. Pap."},{"issue":"21","key":"10.1016\/j.fss.2023.108590_br0620","doi-asserted-by":"crossref","first-page":"4675","DOI":"10.1002\/sim.9089","article-title":"Analyzing categorical time series in the presence of missing observations","volume":"40","author":"Wei\u00df","year":"2021","journal-title":"Stat. Med."}],"container-title":["Fuzzy Sets and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016501142300235X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016501142300235X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,13]],"date-time":"2023-12-13T20:54:11Z","timestamp":1702500851000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016501142300235X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":62,"alternative-id":["S016501142300235X"],"URL":"https:\/\/doi.org\/10.1016\/j.fss.2023.108590","relation":{},"ISSN":["0165-0114"],"issn-type":[{"value":"0165-0114","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Two novel distances for ordinal time series and their application to fuzzy clustering","name":"articletitle","label":"Article Title"},{"value":"Fuzzy Sets and Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.fss.2023.108590","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108590"}}