{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T09:19:43Z","timestamp":1726478383141},"reference-count":17,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,3,1]],"date-time":"2017-03-01T00:00:00Z","timestamp":1488326400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"vor","delay-in-days":1461,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Finite Fields and Their Applications"],"published-print":{"date-parts":[[2017,3]]},"DOI":"10.1016\/j.ffa.2016.11.005","type":"journal-article","created":{"date-parts":[[2016,12,3]],"date-time":"2016-12-03T00:23:22Z","timestamp":1480724602000},"page":"113-134","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["On the next-to-minimal weight of affine cartesian codes"],"prefix":"10.1016","volume":"44","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0527-7522","authenticated-orcid":false,"given":"C\u00edcero","family":"Carvalho","sequence":"first","affiliation":[]},{"given":"Victor G.L.","family":"Neumann","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ffa.2016.11.005_br0010","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1006\/eujc.1993.1011","article-title":"Covering the cube by affine hyperplanes","volume":"14","author":"Alon","year":"1993","journal-title":"Eur. J. Comb."},{"year":"1998","series-title":"Gr\u00f6bner Bases \u2014 A Computational Approach to Commutative Algebra","author":"Becker","key":"10.1016\/j.ffa.2016.11.005_br0020"},{"key":"10.1016\/j.ffa.2016.11.005_br0030","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1090\/conm\/523\/10323","article-title":"Blocking sets and low-weight codewords in the generalized Reed\u2013Muller codes","volume":"525","author":"Bruen","year":"2010","journal-title":"Contemp. Math."},{"key":"10.1016\/j.ffa.2016.11.005_br0040","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1090\/conm\/642\/12881","article-title":"Gr\u00f6bner bases methods in coding theory","volume":"642","author":"Carvalho","year":"2015","journal-title":"Contemp. Math."},{"key":"10.1016\/j.ffa.2016.11.005_br0050","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.ffa.2013.06.004","article-title":"On the second Hamming weight of some Reed\u2013Muller type codes","volume":"24","author":"Carvalho","year":"2013","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.11.005_br0060","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1006\/ffta.1996.0014","article-title":"On the number of points of some hypersurfaces in Fqn","volume":"2","author":"Cherdieu","year":"1996","journal-title":"Finite Fields Appl."},{"year":"2007","series-title":"Ideals, Varieties and Algorithms","author":"Cox","key":"10.1016\/j.ffa.2016.11.005_br0070"},{"key":"10.1016\/j.ffa.2016.11.005_br0080","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/S0019-9958(70)90214-7","article-title":"On generalized Reed\u2013Muller codes and their relatives","volume":"16","author":"Delsarte","year":"1970","journal-title":"Inf. Control"},{"year":"1974","series-title":"Counting zeros of polynomials over finite fields","author":"Erickson","key":"10.1016\/j.ffa.2016.11.005_br0090"},{"issue":"2","key":"10.1016\/j.ffa.2016.11.005_br0100","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1023\/A:1008274212057","article-title":"Decoding affine variety codes using G\u00f6bner bases","volume":"13","author":"Fitzgerald","year":"1998","journal-title":"Des. Codes Cryptogr."},{"issue":"3","key":"10.1016\/j.ffa.2016.11.005_br0110","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1007\/s10623-008-9211-9","article-title":"On the second weight of generalized Reed\u2013Muller codes","volume":"48","author":"Geil","year":"2008","journal-title":"Des. Codes Cryptogr."},{"issue":"1\u20133","key":"10.1016\/j.ffa.2016.11.005_br0120","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1007\/s10623-012-9680-8","article-title":"Weighted Reed\u2013Muller codes revisited","volume":"66","author":"Geil","year":"2013","journal-title":"Des. Codes Cryptogr."},{"key":"10.1016\/j.ffa.2016.11.005_br0130","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1016\/j.ffa.2011.12.003","article-title":"A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed\u2013Muller codes","volume":"18","author":"Leduc","year":"2012","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.11.005_br0140","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s12095-013-0084-z","article-title":"Second weight codewords of generalized Reed\u2013Muller codes","volume":"5","author":"Leduc","year":"2013","journal-title":"Cryptogr. Commun."},{"key":"10.1016\/j.ffa.2016.11.005_br0150","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1016\/j.disc.2015.03.012","article-title":"On the third weight of generalized Reed\u2013Muller codes","volume":"338","author":"Leduc","year":"2015","journal-title":"Discrete Math."},{"issue":"1","key":"10.1016\/j.ffa.2016.11.005_br0160","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s10623-012-9714-2","article-title":"Affine cartesian codes","volume":"71","author":"L\u00f3pez","year":"2014","journal-title":"Des. Codes Cryptogr."},{"key":"10.1016\/j.ffa.2016.11.005_br0170","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s12095-009-0014-2","article-title":"The second weight of generalized Reed\u2013Muller codes in most cases","volume":"2","author":"Rolland","year":"2010","journal-title":"Cryptogr. Commun."}],"container-title":["Finite Fields and Their Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1071579716300740?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1071579716300740?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T01:45:01Z","timestamp":1614563101000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1071579716300740"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,3]]},"references-count":17,"alternative-id":["S1071579716300740"],"URL":"https:\/\/doi.org\/10.1016\/j.ffa.2016.11.005","relation":{},"ISSN":["1071-5797"],"issn-type":[{"type":"print","value":"1071-5797"}],"subject":[],"published":{"date-parts":[[2017,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On the next-to-minimal weight of affine cartesian codes","name":"articletitle","label":"Article Title"},{"value":"Finite Fields and Their Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ffa.2016.11.005","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}