{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T03:48:21Z","timestamp":1719892101271},"reference-count":10,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,9,1]],"date-time":"2016-09-01T00:00:00Z","timestamp":1472688000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,9,2]],"date-time":"2020-09-02T00:00:00Z","timestamp":1599004800000},"content-version":"vor","delay-in-days":1462,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Finite Fields and Their Applications"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1016\/j.ffa.2016.06.006","type":"journal-article","created":{"date-parts":[[2016,7,26]],"date-time":"2016-07-26T06:34:19Z","timestamp":1469514859000},"page":"159-173","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Repeated-root constacyclic codes of length klp over a finite field"],"prefix":"10.1016","volume":"41","author":[{"given":"Hongxi","family":"Tong","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ffa.2016.06.006_br0010","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.ffa.2011.09.005","article-title":"A class of constacyclic codes over a finite field","volume":"18","author":"Bakshi","year":"2012","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.06.006_br0020","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.dam.2014.05.046","article-title":"Repeated-root constacyclic codes of length lps and their duals","volume":"177","author":"Chen","year":"2014","journal-title":"Discrete Appl. Math."},{"key":"10.1016\/j.ffa.2016.06.006_br0030","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.ffa.2014.11.006","article-title":"Repeated-root constacyclic codes of length 2lmpn","volume":"33","author":"Chen","year":"2015","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.06.006_br0040","doi-asserted-by":"crossref","first-page":"1217","DOI":"10.1016\/j.ffa.2012.10.001","article-title":"Constacyclic codes over finite fields","volume":"18","author":"Chen","year":"2012","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.06.006_br0050","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s10623-013-9857-9","article-title":"A class of minimal cyclic codes over finite fields","volume":"74","author":"Chen","year":"2015","journal-title":"Des. Codes Cryptogr."},{"key":"10.1016\/j.ffa.2016.06.006_br0060","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.ffa.2011.07.003","article-title":"Repeated constacyclic codes of length 2ps","volume":"18","author":"Dinh","year":"2012","journal-title":"Finite Fields Appl."},{"key":"10.1016\/j.ffa.2016.06.006_br0070","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1016\/j.disc.2013.01.024","article-title":"Structure of repeated-root constacyclic codes of length 3ps and their duals","volume":"313","author":"Dinh","year":"2013","journal-title":"Discrete Math."},{"key":"10.1016\/j.ffa.2016.06.006_br0080","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1090\/conm\/609\/12150","article-title":"Structure of repeated-root cyclic and negacyclic codes of length 6ps and their duals","volume":"609","author":"Dinh","year":"2014","journal-title":"AMS Contemp. Math."},{"key":"10.1016\/j.ffa.2016.06.006_br0090","series-title":"Finite Fields","author":"Lidl","year":"2008"},{"key":"10.1016\/j.ffa.2016.06.006_br0100","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1016\/j.disc.2014.11.008","article-title":"Self-dual and self-orthogonal negacyclic codes of length 2mpn over a finite field","volume":"338","author":"Sharma","year":"2015","journal-title":"Discrete Math."}],"container-title":["Finite Fields and Their Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1071579716300284?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1071579716300284?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,9,2]],"date-time":"2020-09-02T02:46:53Z","timestamp":1599014813000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1071579716300284"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,9]]},"references-count":10,"alternative-id":["S1071579716300284"],"URL":"https:\/\/doi.org\/10.1016\/j.ffa.2016.06.006","relation":{},"ISSN":["1071-5797"],"issn-type":[{"value":"1071-5797","type":"print"}],"subject":[],"published":{"date-parts":[[2016,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Repeated-root constacyclic codes of length klapb over a finite field","name":"articletitle","label":"Article Title"},{"value":"Finite Fields and Their Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ffa.2016.06.006","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}