{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,9]],"date-time":"2024-12-09T08:40:18Z","timestamp":1733733618406,"version":"3.30.1"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,3,1]],"date-time":"2025-03-01T00:00:00Z","timestamp":1740787200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62373036"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2025,3]]},"DOI":"10.1016\/j.eswa.2024.125692","type":"journal-article","created":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T18:36:38Z","timestamp":1731177398000},"page":"125692","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A stable soft sensor based on causal inference and graph convolutional network for batch processes"],"prefix":"10.1016","volume":"263","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3398-7967","authenticated-orcid":false,"given":"Jianlin","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3643-6098","authenticated-orcid":false,"given":"Enguang","family":"Sui","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5100-8315","authenticated-orcid":false,"given":"Wen","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0006-287X","authenticated-orcid":false,"given":"Xinjie","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0009-1927-374X","authenticated-orcid":false,"given":"Zebin","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2196-7539","authenticated-orcid":false,"given":"Ji","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.125692_b1","series-title":"2018 international conference on soft-computing and network security","first-page":"1","article-title":"Software sensor development for product concentration monitoring in fed-batch fermentation process using dynamic principal component regression","author":"Ahuja","year":"2018"},{"issue":"11","key":"10.1016\/j.eswa.2024.125692_b2","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1016\/S0098-1354(02)00127-8","article-title":"A modular simulation package for fed-batch fermentation:: penicillin production","volume":"26","author":"Birol","year":"2002","journal-title":"Computers and Chemical Engineering"},{"issue":"9","key":"10.1016\/j.eswa.2024.125692_b3","doi-asserted-by":"crossref","first-page":"6068","DOI":"10.1109\/TII.2021.3127204","article-title":"Knowledge automation through graph mining, convolution, and explanation framework: A soft sensor practice","volume":"18","author":"Chen","year":"2022","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.eswa.2024.125692_b4","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.bej.2018.04.015","article-title":"A deep learning based data driven soft sensor for bioprocesses","volume":"136","author":"Gopakumar","year":"2018","journal-title":"Biochemical Engineering Journal"},{"key":"10.1016\/j.eswa.2024.125692_b5","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/978-3-319-98131-4_3","article-title":"Learning functional causal models with generative neural networks","author":"Goudet","year":"2018","journal-title":"Explainable and Interpretable Models in Computer Vision and Machine Learning"},{"key":"10.1016\/j.eswa.2024.125692_b6","series-title":"33rd proceedings of the AAAI conference on artificial intelligence","first-page":"922","article-title":"Attention based spatial-temporal graph convolutional networks for traffic flow forecasting","author":"Guo","year":"2019"},{"issue":"8","key":"10.1016\/j.eswa.2024.125692_b7","doi-asserted-by":"crossref","first-page":"8817","DOI":"10.1109\/TII.2022.3222401","article-title":"Neural network weight comparison for industrial causality discovering and its soft sensing application","volume":"19","author":"He","year":"2022","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.eswa.2024.125692_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.dche.2021.100003","article-title":"A two-step multivariate statistical learning approach for batch process soft sensing","volume":"1","author":"Hicks","year":"2021","journal-title":"Digital Chemical Engineering"},{"key":"10.1016\/j.eswa.2024.125692_b9","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.conengprac.2017.04.012","article-title":"Cause-effect analysis of industrial alarm variables using transfer entropies","volume":"64","author":"Hu","year":"2017","journal-title":"Control Engineering Practice"},{"key":"10.1016\/j.eswa.2024.125692_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.compchemeng.2022.108125","article-title":"Profitability related industrial-scale batch processes monitoring via deep learning based soft sensor development","volume":"170","author":"Ji","year":"2023","journal-title":"Computers and Chemical Engineering"},{"key":"10.1016\/j.eswa.2024.125692_b11","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.jprocont.2023.01.010","article-title":"Graph convolutional network soft sensor for process quality prediction","volume":"123","author":"Jia","year":"2023","journal-title":"Journal of Process Control"},{"issue":"4","key":"10.1016\/j.eswa.2024.125692_b12","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1109\/TAI.2022.3145758","article-title":"Data-driven soft sensing for batch processes using neural network-based deep quality-relevant representation learning","volume":"4","author":"Jiang","year":"2022","journal-title":"IEEE Transactions on Artificial Intelligence"},{"key":"10.1016\/j.eswa.2024.125692_b13","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.ces.2015.03.038","article-title":"Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes","volume":"131","author":"Jin","year":"2015","journal-title":"Chemical Engineering Science"},{"key":"10.1016\/j.eswa.2024.125692_b14","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.chemolab.2018.12.002","article-title":"Ensemble just-in-time learning framework through evolutionary multi-objective optimization for soft sensor development of nonlinear industrial processes","volume":"184","author":"Jin","year":"2019","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"year":"2013","author":"Kingma","series-title":"Auto-encoding variational bayes","key":"10.1016\/j.eswa.2024.125692_b15"},{"year":"2016","author":"Kipf","series-title":"Semi-supervised classification with graph convolutional networks","key":"10.1016\/j.eswa.2024.125692_b16"},{"issue":"2","key":"10.1016\/j.eswa.2024.125692_b17","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1080\/10705511.2017.1401932","article-title":"Review of principles and practice of structural equation modeling","volume":"25","author":"Martynova","year":"2018","journal-title":"Structural Equation Modeling"},{"key":"10.1016\/j.eswa.2024.125692_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.chemolab.2022.104616","article-title":"Probabilistic machine learning based soft-sensors for product quality prediction in batch processes","volume":"228","author":"Mowbray","year":"2022","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"issue":"9","key":"10.1016\/j.eswa.2024.125692_b19","article-title":"Diversified kernel latent variable space and multi-objective optimization for selective ensemble learning-based soft sensor","volume":"13","author":"Peng","year":"2023","journal-title":"Applied Sciences-Basel"},{"key":"10.1016\/j.eswa.2024.125692_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115223","article-title":"Soft sensor development based on kernel dynamic time warping and a relevant vector machine for unequal-length batch processes","volume":"182","author":"Qiu","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.125692_b21","article-title":"Digitization in bioprocessing: The role of soft sensors in monitoring and control of downstream processing for production of biotherapeutic products","volume":"12","author":"Rathore","year":"2022","journal-title":"Biosensors and Bioelectronics: X"},{"key":"10.1016\/j.eswa.2024.125692_b22","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.ces.2013.02.069","article-title":"Soft sensor assisted dynamic bioprocess control: Efficient tools for bioprocess development","volume":"96","author":"Sagmeister","year":"2013","journal-title":"Chemical Engineering Science"},{"key":"10.1016\/j.eswa.2024.125692_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.psep.2024.08.023","article-title":"Soft sensor model for nonlinear dynamic industrial process based on GraphSAGE-IMATCN","author":"Tuo","year":"2024","journal-title":"Process Safety and Environmental Protection"},{"issue":"4","key":"10.1016\/j.eswa.2024.125692_b24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3527154","article-title":"D\u2019ya like dags? A survey on structure learning and causal discovery","volume":"55","author":"Vowels","year":"2022","journal-title":"ACM Computing Surveys"},{"key":"10.1016\/j.eswa.2024.125692_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3216413","article-title":"A hybrid-structure soft sensor based on model risk assessment and weight fusion for batch processes","volume":"71","author":"Wang","year":"2022","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"issue":"17","key":"10.1016\/j.eswa.2024.125692_b26","doi-asserted-by":"crossref","first-page":"19198","DOI":"10.1109\/JSEN.2021.3090524","article-title":"Dynamic soft sensor for anaerobic digestion of kitchen waste based on SGSTGAT","volume":"21","author":"Wang","year":"2021","journal-title":"IEEE Sensors Journal"},{"issue":"8","key":"10.1016\/j.eswa.2024.125692_b27","doi-asserted-by":"crossref","first-page":"5325","DOI":"10.1109\/TII.2020.3025204","article-title":"Variational autoencoder bidirectional long and short-term memory neural network soft-sensor model based on batch training strategy","volume":"17","author":"Xie","year":"2021","journal-title":"IEEE Transactions on Industrial Informatics"},{"issue":"7","key":"10.1016\/j.eswa.2024.125692_b28","doi-asserted-by":"crossref","first-page":"4185","DOI":"10.3934\/era.2023213","article-title":"A comprehensive review of graph convolutional networks: approaches and applications","volume":"31","author":"Xu","year":"2023","journal-title":"Electronic Research Archive"},{"key":"10.1016\/j.eswa.2024.125692_b29","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.chemolab.2016.04.009","article-title":"Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models","volume":"155","author":"Yang","year":"2016","journal-title":"Chemometrics and Intelligent Laboratory Systems"},{"key":"10.1016\/j.eswa.2024.125692_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.105658","article-title":"Causal variable selection for industrial process quality prediction via attention-based GRU network","volume":"118","author":"Yao","year":"2023","journal-title":"Engineering Applications of Artificial Intelligence"},{"issue":"1","key":"10.1016\/j.eswa.2024.125692_b31","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ac2ca4","article-title":"Mixed kernel principal component weighted regression based on just-in-time learning for soft sensor modeling","volume":"33","author":"Yin","year":"2022","journal-title":"Measurement Science & Technology"},{"key":"10.1016\/j.eswa.2024.125692_b32","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.jprocont.2021.08.014","article-title":"Meticulous process monitoring with multiscale convolutional feature extraction","volume":"106","author":"Yu","year":"2021","journal-title":"Journal of Process Control"},{"key":"10.1016\/j.eswa.2024.125692_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.conengprac.2022.105109","article-title":"Stable soft sensor modeling based on causality analysis","volume":"122","author":"Yu","year":"2022","journal-title":"Control Engineering Practice"},{"issue":"6","key":"10.1016\/j.eswa.2024.125692_b34","doi-asserted-by":"crossref","first-page":"8798","DOI":"10.1109\/TII.2024.3372013","article-title":"Reliable soft sensors with an inherent process graph constraint","volume":"20","author":"Zhai","year":"2024","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.eswa.2024.125692_b35","series-title":"32nd international conference on neural information processing systems","article-title":"DAGs with NO TEARS: Continuous optimization for structure learning","volume":"vol. 31","author":"Zheng","year":"2018"},{"issue":"19","key":"10.1016\/j.eswa.2024.125692_b36","doi-asserted-by":"crossref","first-page":"16653","DOI":"10.1021\/acsomega.2c01108","article-title":"Nonlinear dynamic soft sensor development with a supervised hybrid CNN-LSTM network for industrial processes","volume":"7","author":"Zheng","year":"2022","journal-title":"ACS Omega"},{"issue":"9","key":"10.1016\/j.eswa.2024.125692_b37","doi-asserted-by":"crossref","first-page":"9614","DOI":"10.1109\/TIE.2022.3215448","article-title":"Dynamic graph-based adaptive learning for online industrial soft sensor with mutable spatial coupling relations","volume":"70","author":"Zhu","year":"2023","journal-title":"IEEE Transactions on Industrial Electronics"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424025594?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424025594?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,9]],"date-time":"2024-12-09T08:09:16Z","timestamp":1733731756000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424025594"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,3]]},"references-count":37,"alternative-id":["S0957417424025594"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125692","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2025,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A stable soft sensor based on causal inference and graph convolutional network for batch processes","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125692","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"125692"}}