{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T22:40:24Z","timestamp":1732833624463,"version":"3.30.0"},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T00:00:00Z","timestamp":1729209600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.eswa.2024.125521","type":"journal-article","created":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T10:44:20Z","timestamp":1728989060000},"page":"125521","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["APT: Alarm Prediction Transformer"],"prefix":"10.1016","volume":"261","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3587-7729","authenticated-orcid":false,"given":"Nika","family":"Strem","sequence":"first","affiliation":[]},{"given":"Devendra Singh","family":"Dhami","sequence":"additional","affiliation":[]},{"given":"Benedikt","family":"Schmidt","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Kl\u00f6pper","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2873-9152","authenticated-orcid":false,"given":"Kristian","family":"Kersting","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.125521_b1","article-title":"Vatt: Transformers for multimodal self-supervised learning from raw video, audio and text","volume":"34","author":"Akbari","year":"2021","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2024.125521_b2","doi-asserted-by":"crossref","DOI":"10.1175\/WAF-D-21-0091.1","article-title":"Hurricane forecasting: A novel multimodal machine learning framework","author":"Boussioux","year":"2022","journal-title":"Weather and Forecasting"},{"key":"10.1016\/j.eswa.2024.125521_b3","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/j.isatra.2018.10.032","article-title":"Process alarm prediction using deep learning and word embedding methods","volume":"85","author":"Cai","year":"2019","journal-title":"ISA Transactions"},{"key":"10.1016\/j.eswa.2024.125521_b4","doi-asserted-by":"crossref","unstructured":"Chatterjee, J., & Dethlefs, N. (2020). A Dual Transformer Model for Intelligent Decision Support for Maintenance of Wind Turbines. In 2020 international joint conference on neural networks (pp. 1\u201310).","DOI":"10.1109\/IJCNN48605.2020.9206839"},{"key":"10.1016\/j.eswa.2024.125521_b5","article-title":"History aware multimodal transformer for vision-and-language navigation","volume":"34","author":"Chen","year":"2021","journal-title":"Advances in Neural Information Processing Systems"},{"year":"2021","series-title":"Unifying vision-and-language tasks via text generation","author":"Cho","key":"10.1016\/j.eswa.2024.125521_b6"},{"key":"10.1016\/j.eswa.2024.125521_b7","doi-asserted-by":"crossref","unstructured":"Datong, L., Yu, P., & Xiyuan, P. (2009-05). Fault Prediction Based on Time Series with Online Combined Kernel SVR Methods. In 2009 IEEE instrumentation and measurement technology conference (pp. 1163\u20131166).","DOI":"10.1109\/IMTC.2009.5168630"},{"year":"2018","series-title":"Bert: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","key":"10.1016\/j.eswa.2024.125521_b8"},{"key":"10.1016\/j.eswa.2024.125521_b9","series-title":"International conference on artificial intelligence in medicine","first-page":"252","article-title":"Predicting drug-drug interactions from heterogeneous data: An embedding approach","author":"Dhami","year":"2021"},{"key":"10.1016\/j.eswa.2024.125521_b10","series-title":"2013 IEEE\/RSJ international conference on intelligent robots and systems","first-page":"5827","article-title":"Bayesian time-series models for continuous fault detection and recognition in industrial robotic tasks","author":"Di Lello","year":"2013"},{"year":"2021","series-title":"KKS Kraftwerk-Kennzeichensystem","author":"Essen","key":"10.1016\/j.eswa.2024.125521_b11"},{"issue":"1","key":"10.1016\/j.eswa.2024.125521_b12","article-title":"Application of automated machine learning (AutoML) method in wind turbine fault detection","volume":"2312","author":"Fadzail","year":"2022","journal-title":"Journal of Physics: Conference Series"},{"year":"2019","series-title":"Explainable failure predictions with RNN Classifiers based on time series data","author":"Giurgiu","key":"10.1016\/j.eswa.2024.125521_b13"},{"key":"10.1016\/j.eswa.2024.125521_b14","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.rser.2018.09.012","article-title":"Deep learning for fault detection in wind turbines","volume":"98","author":"Helbing","year":"2018","journal-title":"Renewable and Sustainable Energy Reviews"},{"year":"2021","series-title":"Decoupling the role of data, attention, and losses in multimodal transformers","author":"Hendricks","key":"10.1016\/j.eswa.2024.125521_b15"},{"year":"2001","series-title":"Gradient flow in recurrent nets: the difficulty of learning long-term dependencies","author":"Hochreiter","key":"10.1016\/j.eswa.2024.125521_b16"},{"year":"2021","series-title":"UniT: Multimodal multitask learning with a unified transformer","author":"Hu","key":"10.1016\/j.eswa.2024.125521_b17"},{"year":"2014","author":"IEC 62682 Management of Alarm Systems for the Process Industries","key":"10.1016\/j.eswa.2024.125521_b18"},{"key":"10.1016\/j.eswa.2024.125521_b19","doi-asserted-by":"crossref","unstructured":"Inceoglu, A., Aksoy, E. E., Cihan Ak, A., & Sariel, S. (2021). FINO-net: a deep multimodal sensor fusion framework for manipulation failure detection. In 2021 IEEE\/RSJ international conference on intelligent robots and systems (IROS) (pp. 6841\u20136847).","DOI":"10.1109\/IROS51168.2021.9636455"},{"journal-title":"Automation","article-title":"Hidden Markov Models und Active Learning zur automatisierten Kennzeichnung von Batchphasen in der Prozessindustrie","year":"2022","author":"Just","key":"10.1016\/j.eswa.2024.125521_b20"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.eswa.2024.125521_b21"},{"year":"2017","series-title":"Opennmt: Open-source toolkit for neural machine translation","author":"Klein","key":"10.1016\/j.eswa.2024.125521_b22"},{"issue":"12","key":"10.1016\/j.eswa.2024.125521_b23","doi-asserted-by":"crossref","first-page":"1779","DOI":"10.1002\/we.2402","article-title":"Offshore wind turbine fault alarm prediction","volume":"22","author":"Koltsidopoulos Papatzimos","year":"2019","journal-title":"Wind Energy"},{"key":"10.1016\/j.eswa.2024.125521_b24","doi-asserted-by":"crossref","unstructured":"Langone, R., Alzate, C., Bey-Temsamani, A., & Suykens, J. A. K. (2014). Alarm prediction in industrial machines using autoregressive LS-SVM models. In 2014 IEEE symposium on computational intelligence and data mining (CIDM) (pp. 359\u2013364).","DOI":"10.1109\/CIDM.2014.7008690"},{"key":"10.1016\/j.eswa.2024.125521_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.datak.2020.101850","article-title":"Interpretable Anomaly Prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools","volume":"130","author":"Langone","year":"2020","journal-title":"Data & Knowledge Engineering"},{"issue":"2","key":"10.1016\/j.eswa.2024.125521_b26","first-page":"172","article-title":"Deep multimodal learning and fusion based intelligent fault diagnosis approach","volume":"30","author":"Li","year":"2021","journal-title":"Journal of Beijing Institute of Technology"},{"key":"10.1016\/j.eswa.2024.125521_b27","series-title":"2013 IEEE international conference on big data","first-page":"7","article-title":"Alarm prediction in large-scale sensor networks. A case study in railroad","author":"Li","year":"2013"},{"issue":"4","key":"10.1016\/j.eswa.2024.125521_b28","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1007\/s40436-017-0203-8","article-title":"Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario","volume":"5","author":"Li","year":"2017","journal-title":"Advances in Manufacturing"},{"year":"2022","series-title":"Learning sequential latent variable models from multimodal time series data","author":"Limoyo","key":"10.1016\/j.eswa.2024.125521_b29"},{"key":"10.1016\/j.eswa.2024.125521_b30","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.procir.2018.03.224","article-title":"Deep learning-based multimodal control interface for human-robot collaboration","volume":"72","author":"Liu","year":"2018","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.eswa.2024.125521_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.jii.2021.100216","article-title":"Fault detection in Tennessee Eastman process with temporal deep learning models","volume":"23","author":"Lomov","year":"2021","journal-title":"Journal of Industrial Information Integration"},{"key":"10.1016\/j.eswa.2024.125521_b32","series-title":"Advances in neural information processing systems","article-title":"ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks","volume":"Vol. 32","author":"Lu","year":"2019"},{"key":"10.1016\/j.eswa.2024.125521_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.conengprac.2019.104195","article-title":"Fault detection and identification combining process measurements and statistical alarms","volume":"94","author":"Lucke","year":"2020","journal-title":"Control Engineering Practice"},{"key":"10.1016\/j.eswa.2024.125521_b34","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.egypro.2017.09.618","article-title":"Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies","volume":"134","author":"Moya","year":"2017","journal-title":"Energy Procedia"},{"key":"10.1016\/j.eswa.2024.125521_b35","doi-asserted-by":"crossref","unstructured":"Nambiar, A., Heflin, M., Liu, S., Maslov, S., Hopkins, M., & Ritz, A. (2020). Transforming the language of life: Transformer neural networks for protein prediction tasks. In Proceedings of the 11th ACM international conference on bioinformatics, computational biology and health informatics (pp. 1\u20138).","DOI":"10.1145\/3388440.3412467"},{"year":"2020","series-title":"The chess transformer: Mastering play using generative language models","author":"Noever","key":"10.1016\/j.eswa.2024.125521_b36"},{"key":"10.1016\/j.eswa.2024.125521_b37","series-title":"Proceedings of the 40th annual meeting on association for computational linguistics","first-page":"311","article-title":"BLEU: A method for automatic evaluation of machine translation","author":"Papineni","year":"2002"},{"issue":"4","key":"10.1016\/j.eswa.2024.125521_b38","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1007\/s10098-011-0353-5","article-title":"Waste incineration with production of clean and reliable energy","volume":"13","author":"Pavlas","year":"2011","journal-title":"Clean Technologies and Environmental Policy"},{"year":"2019","series-title":"Omninet: A unified architecture for multi-modal multi-task learning","author":"Pramanik","key":"10.1016\/j.eswa.2024.125521_b39"},{"key":"10.1016\/j.eswa.2024.125521_b40","series-title":"2019 IEEE international congress on big data (bigDataCongress)","first-page":"139","article-title":"PREMISES, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle industrial processes","author":"Proto","year":"2019"},{"issue":"5","key":"10.1016\/j.eswa.2024.125521_b41","doi-asserted-by":"crossref","first-page":"1718","DOI":"10.1016\/j.wasman.2008.11.020","article-title":"Waste-to-energy: A review of the status and benefits in USA","volume":"29","author":"Psomopoulos","year":"2009","journal-title":"Waste Management"},{"key":"10.1016\/j.eswa.2024.125521_b42","series-title":"International conference on machine learning","first-page":"8748","article-title":"Learning transferable visual models from natural language supervision","author":"Radford","year":"2021"},{"issue":"8","key":"10.1016\/j.eswa.2024.125521_b43","first-page":"9","article-title":"Language models are unsupervised multitask learners","volume":"1","author":"Radford","year":"2019","journal-title":"OpenAI Blog"},{"key":"10.1016\/j.eswa.2024.125521_b44","series-title":"Proceedings of the conference. association for computational linguistics. meeting","first-page":"2359","article-title":"Integrating multimodal information in large pretrained transformers","volume":"2020","author":"Rahman","year":"2020"},{"key":"10.1016\/j.eswa.2024.125521_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.compchemeng.2021.107281","article-title":"An extended Tennessee Eastman simulation dataset for fault-detection and decision support systems","volume":"149","author":"Reinartz","year":"2021","journal-title":"Computers & Chemical Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2024.125521_b46","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1002\/prs.11739","article-title":"Using alarms as a layer of protection","volume":"35","author":"Stauffer","year":"2016","journal-title":"Process Safety Progress"},{"year":"2019","series-title":"Learning video representations using contrastive bidirectional transformer","author":"Sun","key":"10.1016\/j.eswa.2024.125521_b47"},{"year":"2022","series-title":"Datasets from multiple cycles","author":"Tan","key":"10.1016\/j.eswa.2024.125521_b48"},{"year":"2019","series-title":"Lxmert: Learning cross-modality encoder representations from transformers","author":"Tan","key":"10.1016\/j.eswa.2024.125521_b49"},{"issue":"1","key":"10.1016\/j.eswa.2024.125521_b50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-56527-3","article-title":"Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data","volume":"9","author":"Tiulpin","year":"2019","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2024.125521_b51","series-title":"Proceedings of the 57th annual meeting of the association for computational linguistics","first-page":"6558","article-title":"Multimodal transformer for unaligned multimodal language sequences","author":"Tsai","year":"2019"},{"year":"2018","series-title":"Tensor2tensor for neural machine translation","author":"Vaswani","key":"10.1016\/j.eswa.2024.125521_b52"},{"key":"10.1016\/j.eswa.2024.125521_b53","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"5","key":"10.1016\/j.eswa.2024.125521_b54","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1007\/s10845-020-01614-w","article-title":"A flexible alarm prediction system for smart manufacturing scenarios following a forecaster\u2013analyzer approach","volume":"32","author":"Villalobos","year":"2021","journal-title":"Journal of Intelligent Manufacturing"},{"year":"2021","series-title":"UFO: A UniFied TransfOrmer for vision-language representation learning","author":"Wang","key":"10.1016\/j.eswa.2024.125521_b55"},{"key":"10.1016\/j.eswa.2024.125521_b56","doi-asserted-by":"crossref","unstructured":"Wang, X., & Liang, D. (2020). LSTM-based Alarm Prediction in the Mobile Communication Network. In 2020 IEEE 6th international conference on computer and communications (pp. 561\u2013567).","DOI":"10.1109\/ICCC51575.2020.9344951"},{"year":"2022","series-title":"Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework","author":"Wang","key":"10.1016\/j.eswa.2024.125521_b57"},{"key":"10.1016\/j.eswa.2024.125521_b58","doi-asserted-by":"crossref","first-page":"638","DOI":"10.1016\/j.fuel.2017.06.037","article-title":"Simulating municipal solid waste incineration with a DEM\/CFD method\u2013Influences of waste properties, grate and furnace design","volume":"206","author":"Wissing","year":"2017","journal-title":"Fuel"},{"key":"10.1016\/j.eswa.2024.125521_b59","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.wasman.2020.01.016","article-title":"A two-fluid model simulation of an industrial moving grate waste incinerator","volume":"104","author":"Xia","year":"2020","journal-title":"Waste Management"},{"key":"10.1016\/j.eswa.2024.125521_b60","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jmsy.2021.01.007","article-title":"A multi-branch deep neural network model for failure prognostics based on multimodal data","volume":"59","author":"Yang","year":"2021","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.eswa.2024.125521_b61","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.123158","article-title":"A comparison between a natural gas power plant and a municipal solid waste incineration power plant based on an emergy analysis","volume":"274","author":"Yazdani","year":"2020","journal-title":"Journal of Cleaner Production"},{"issue":"6","key":"10.1016\/j.eswa.2024.125521_b62","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1177\/0734242X20953494","article-title":"Process simulation and comprehensive evaluation of a system of coal power plant coupled with waste incineration","volume":"39","author":"Ye","year":"2021","journal-title":"Waste Management & Research"},{"key":"10.1016\/j.eswa.2024.125521_b63","doi-asserted-by":"crossref","DOI":"10.1088\/1757-899X\/339\/1\/012039","article-title":"Fault detection of Tennessee Eastman process based on topological features and SVM","volume":"339","author":"Zhao","year":"2018","journal-title":"IOP Conference Series: Materials Science and Engineering"},{"issue":"7","key":"10.1016\/j.eswa.2024.125521_b64","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1016\/j.cjche.2016.04.017","article-title":"Dynamic alarm prediction for critical alarms using a probabilistic model","volume":"24","author":"Zhu","year":"2016","journal-title":"Chinese Journal of Chemical Engineering"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424023881?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424023881?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,28]],"date-time":"2024-11-28T22:04:00Z","timestamp":1732831440000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424023881"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":64,"alternative-id":["S0957417424023881"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125521","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"APT: Alarm Prediction Transformer","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125521","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"125521"}}