{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:50:11Z","timestamp":1740117011930,"version":"3.37.3"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2025,2,1]],"date-time":"2025-02-01T00:00:00Z","timestamp":1738368000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["ZR2021MF101","61572269"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2025,2]]},"DOI":"10.1016\/j.eswa.2024.125486","type":"journal-article","created":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T16:03:20Z","timestamp":1728144200000},"page":"125486","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Predicting routability of FPGA design by learning complex network images"],"prefix":"10.1016","volume":"261","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2150-303X","authenticated-orcid":false,"given":"Tingyuan","family":"Nie","sequence":"first","affiliation":[]},{"given":"Yanwei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Pengfei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Kun","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Zhenhao","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.eswa.2024.125486_b1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3337930","article-title":"Novel congestion-estimation and routability-prediction methods based on machine learning for modern FPGAs","volume":"12","author":"Al-Hyari","year":"2019","journal-title":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)"},{"issue":"3","key":"10.1016\/j.eswa.2024.125486_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3465373","article-title":"A deep learning framework to predict routability for FPGA circuit placement","volume":"14","author":"Al-Hyari","year":"2021","journal-title":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)"},{"key":"10.1016\/j.eswa.2024.125486_b3","doi-asserted-by":"crossref","unstructured":"Alhyari, A., Shamli, A., Abuwaimer, Z., et al. (2019). A Deep Learning Framework to Predict Routability for FPGA Circuit Placement. In 2019 29th international conference on field programmable logic and applications (pp. 334\u2013341).","DOI":"10.1109\/FPL.2019.00060"},{"key":"10.1016\/j.eswa.2024.125486_b4","doi-asserted-by":"crossref","unstructured":"Chan, W.-T. J., Du, Y., Kahng, A. B., Nath, S., et al. (2016). BEOL stack-aware routability prediction from placement using data mining techniques. In 2016 IEEE 34th international conference on computer design (pp. 41\u201348).","DOI":"10.1109\/ICCD.2016.7753259"},{"key":"10.1016\/j.eswa.2024.125486_b5","doi-asserted-by":"crossref","unstructured":"Chan, P. K., Schlag, M. D., & Zien, J. Y. (1993). On routability prediction for field-programmable gate arrays. In Proceedings of the 30th international design automation conference (pp. 326\u2013330).","DOI":"10.1145\/157485.164915"},{"key":"10.1016\/j.eswa.2024.125486_b6","doi-asserted-by":"crossref","unstructured":"Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785\u2013794).","DOI":"10.1145\/2939672.2939785"},{"year":"2016","series-title":"Guelph FPGA CAD group","author":"Grewal","key":"10.1016\/j.eswa.2024.125486_b7"},{"key":"10.1016\/j.eswa.2024.125486_b8","doi-asserted-by":"crossref","unstructured":"Grewal, G., Areibi, S., Westrik, M., et al. (2017). Automatic flow selection and quality-of-result estimation for FPGA placement. In 2017 IEEE international parallel and distributed processing symposium workshops (pp. 115\u2013123).","DOI":"10.1109\/IPDPSW.2017.54"},{"key":"10.1016\/j.eswa.2024.125486_b9","doi-asserted-by":"crossref","unstructured":"Gunter, A. D., & Wilton, S. J. (2023). A Machine Learning Approach for Predicting the Difficulty of FPGA Routing Problems. In 2023 IEEE 31st annual international symposium on field-programmable custom computing machines (pp. 63\u201374).","DOI":"10.1109\/FCCM57271.2023.00016"},{"key":"10.1016\/j.eswa.2024.125486_b10","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.patrec.2023.05.005","article-title":"Residual 3D convolutional neural network to enhance sinograms from small-animal positron emission tomography images","volume":"172","author":"Hern\u00e1ndez","year":"2023","journal-title":"Pattern Recognition Letters"},{"issue":"5","key":"10.1016\/j.eswa.2024.125486_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3451179","article-title":"Machine learning for electronic design automation: A survey","volume":"26","author":"Huang","year":"2021","journal-title":"ACM Transactions on Design Automation of Electronic Systems (TODAES)"},{"key":"10.1016\/j.eswa.2024.125486_b12","doi-asserted-by":"crossref","unstructured":"Jayaraman, R. (2001). Physical design for FPGAs. In Proceedings of the 2001 international symposium on Physical design (pp. 214\u2013221).","DOI":"10.1145\/369691.369776"},{"key":"10.1016\/j.eswa.2024.125486_b13","doi-asserted-by":"crossref","unstructured":"Kannan, P., & Bhatia, D. (2001). Tightly integrated placement and routing for FPGAs. In International conference on field programmable logic and applications (pp. 233\u2013242).","DOI":"10.1007\/3-540-44687-7_25"},{"key":"10.1016\/j.eswa.2024.125486_b14","series-title":"Deep learning with Python: learn best practices of deep learning models with PyTorch","first-page":"197","article-title":"Convolutional neural networks","author":"Ketkar","year":"2021"},{"key":"10.1016\/j.eswa.2024.125486_b15","doi-asserted-by":"crossref","unstructured":"Li, W., & Banerji, D. K. (1999). Routability prediction for hierarchical FPGAs. In Proceedings ninth great lakes symposium on VLSI (pp. 256\u2013259).","DOI":"10.1109\/GLSV.1999.757428"},{"issue":"4","key":"10.1016\/j.eswa.2024.125486_b16","doi-asserted-by":"crossref","first-page":"869","DOI":"10.1109\/TCAD.2017.2729349","article-title":"UTPlaceF: A routability-driven FPGA placer with physical and congestion aware packing","volume":"37","author":"Li","year":"2017","journal-title":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems"},{"key":"10.1016\/j.eswa.2024.125486_b17","doi-asserted-by":"crossref","unstructured":"Long, J., Wei, X., Qi, Q., & Wang, Y. (2020). A deep hashing method based on attention module for image retrieval. In 2020 13th international conference on intelligent computation technology and automation (pp. 284\u2013288).","DOI":"10.1109\/ICICTA51737.2020.00066"},{"key":"10.1016\/j.eswa.2024.125486_b18","doi-asserted-by":"crossref","unstructured":"Ma, Z., & Huang, G. (2022). Complex Network-Based Image Classification Method. In 2022 5th international conference on artificial intelligence and big data (pp. 63\u201367).","DOI":"10.1109\/ICAIBD55127.2022.9820534"},{"key":"10.1016\/j.eswa.2024.125486_b19","doi-asserted-by":"crossref","unstructured":"Maarouf, D., Alhyari, A., Abuowaimer, Z., et al. (2018). Machine-learning based congestion estimation for modern FPGAs. In 2018 28th international conference on field programmable logic and applications (pp. 427\u20134277).","DOI":"10.1109\/FPL.2018.00079"},{"key":"10.1016\/j.eswa.2024.125486_b20","doi-asserted-by":"crossref","unstructured":"Martin, T., Areibi, S., & Gr\u00e9wal, G. (2021). Effective Machine-Learning Models for Predicting Routability During FPGA Placement. In 2021 ACM\/IEEE 3rd workshop on machine learning for CAD (pp. 1\u20136).","DOI":"10.1109\/MLCAD52597.2021.9531243"},{"key":"10.1016\/j.eswa.2024.125486_b21","doi-asserted-by":"crossref","unstructured":"Martin, T., Barnes, C., Grewal, G., et al. (2022). Integrating Machine-Learning Probes into the VTR FPGA Design Flow. In 2022 35th SBC\/SBMicro\/IEEE\/ACM symposium on integrated circuits and systems design (pp. 1\u20136).","DOI":"10.1109\/SBCCI55532.2022.9893251"},{"key":"10.1016\/j.eswa.2024.125486_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2022.127346","article-title":"Complexity and robustness of weighted circuit network of placement","volume":"598","author":"Nie","year":"2022","journal-title":"Physica A. Statistical Mechanics and its Applications"},{"year":"2015","series-title":"An introduction to convolutional neural networks","author":"O\u2019shea","key":"10.1016\/j.eswa.2024.125486_b23"},{"issue":"55","key":"10.1016\/j.eswa.2024.125486_b24","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1098\/rsif.2010.0212","article-title":"The evolvability of programmable hardware","volume":"8","author":"Raman","year":"2011","journal-title":"Journal of the Royal Society Interface"},{"issue":"5","key":"10.1016\/j.eswa.2024.125486_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3373269","article-title":"Machine learning for congestion management and routability prediction within FPGA placement","volume":"25","author":"Szentimrey","year":"2020","journal-title":"ACM Transactions on Design Automation of Electronic Systems (TODAES)"},{"key":"10.1016\/j.eswa.2024.125486_b26","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.-Y., et al. (2018). Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (pp. 3\u201319).","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.eswa.2024.125486_b27","doi-asserted-by":"crossref","unstructured":"Wood, R. G., & Rutenbar, R. A. (1997). FPGA routing and routability estimation via Boolean satisfiability. In Proceedings of the 1997 ACM fifth international symposium on Field-programmable gate arrays (pp. 119\u2013125).","DOI":"10.1145\/258305.258322"},{"key":"10.1016\/j.eswa.2024.125486_b28","doi-asserted-by":"crossref","unstructured":"Xie, Z., Huang, Y.-H., Fang, G.-Q., et al. (2018). RouteNet: Routability prediction for mixed-size designs using convolutional neural network. In 2018 IEEE\/ACM international conference on computer-aided design (pp. 1\u20138).","DOI":"10.1145\/3240765.3240843"},{"year":"2017","series-title":"UltraScale architecture configurable logic block user guide","author":"Xilinx","key":"10.1016\/j.eswa.2024.125486_b29"},{"key":"10.1016\/j.eswa.2024.125486_b30","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.patrec.2022.08.010","article-title":"Rotation invariant Gabor convolutional neural network for image classification","volume":"162","author":"Yao","year":"2022","journal-title":"Pattern Recognition Letters"},{"issue":"15","key":"10.1016\/j.eswa.2024.125486_b31","first-page":"3","article-title":"Analysis and optimization of large-scale circuit based on complex network theory","volume":"37","author":"Zheng","year":"2011","journal-title":"Computer Engineering"},{"key":"10.1016\/j.eswa.2024.125486_b32","doi-asserted-by":"crossref","unstructured":"Zhou, Q., Wang, X., Qi, Z., et al. (2015). An accurate detailed routing routability prediction model in placement. In 2015 6th Asia symposium on quality electronic design (pp. 119\u2013122).","DOI":"10.1109\/ACQED.2015.7274019"},{"issue":"1","key":"10.1016\/j.eswa.2024.125486_b33","doi-asserted-by":"crossref","first-page":"11325","DOI":"10.1038\/s41598-021-90923-y","article-title":"Converting tabular data into images for deep learning with convolutional neural networks","volume":"11","author":"Zhu","year":"2021","journal-title":"Scientific Reports"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424023534?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424023534?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,24]],"date-time":"2024-12-24T12:14:54Z","timestamp":1735042494000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424023534"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2025,2]]},"references-count":33,"alternative-id":["S0957417424023534"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125486","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2025,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Predicting routability of FPGA design by learning complex network images","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125486","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"125486"}}