{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:44:18Z","timestamp":1726188258865},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T00:00:00Z","timestamp":1724457600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004735","name":"Hunan Provincial Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004735","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.eswa.2024.125146","type":"journal-article","created":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T12:44:41Z","timestamp":1724417081000},"page":"125146","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Artificial intelligence-empowered assessment of bile duct stone removal challenges"],"prefix":"10.1016","volume":"258","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1343-5199","authenticated-orcid":false,"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Hao","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Kaibin","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Zhiyuan","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7432-1788","authenticated-orcid":false,"given":"Minghao","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.125146_b0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104335","article-title":"Explaining machine learning based diagnosis of COVID-19 from routine blood tests with decision trees and criteria graphs","volume":"132","author":"Alves","year":"2021","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2024.125146_b0010","first-page":"3884","article-title":"On warm-starting neural network training","volume":"33","author":"Ash","year":"2020","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"21","key":"10.1016\/j.eswa.2024.125146_b0015","doi-asserted-by":"crossref","first-page":"13493","DOI":"10.1007\/s00500-021-06105-5","article-title":"Development of integrated deep learning and machine learning algorithm for the assessment of landslide hazard potential","volume":"25","author":"Aslam","year":"2021","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2024.125146_b0025","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.jclinepi.2015.10.016","article-title":"A nomogram was developed to enhance the use of multinomial logistic regression modeling in diagnostic research","volume":"71","author":"Bertens","year":"2016","journal-title":"Journal of Clinical Epidemiology"},{"issue":"7247","key":"10.1016\/j.eswa.2024.125146_b0030","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1136\/bmj.320.7247.1468","article-title":"The odds ratio","volume":"320","author":"Bland","year":"2000","journal-title":"BMJ"},{"issue":"4","key":"10.1016\/j.eswa.2024.125146_b0035","doi-asserted-by":"crossref","first-page":"1050","DOI":"10.1016\/j.gie.2017.08.021","article-title":"Randomized trial of cholangioscopy-guided laser lithotripsy versus conventional therapy for large bile duct stones (with videos)","volume":"87","author":"Buxbaum","year":"2018","journal-title":"Gastrointestinal endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2020.108275","article-title":"Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches","volume":"297","author":"Cao","year":"2021","journal-title":"Agricultural and Forest Meteorology"},{"key":"10.1016\/j.eswa.2024.125146_b0045","doi-asserted-by":"crossref","DOI":"10.1109\/JTEHM.2023.3286423","article-title":"Multiple field-of-view based attention driven network for weakly-supervised common bile duct stone detection","author":"Chang","year":"2023","journal-title":"IEEE Journal of Translational Engineering in Health and Medicine"},{"key":"10.1016\/j.eswa.2024.125146_b0050","doi-asserted-by":"crossref","unstructured":"Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).","DOI":"10.1145\/2939672.2939785"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12864-019-6413-7","article-title":"The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation","volume":"21","author":"Chicco","year":"2020","journal-title":"BMC genomics"},{"issue":"2","key":"10.1016\/j.eswa.2024.125146_b0060","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1111\/j.1440-1746.2011.06863.x","article-title":"Endoscopic papillary large balloon dilation in Billroth II gastrectomy patients with bile duct stones","volume":"27","author":"Choi","year":"2012","journal-title":"Journal of gastroenterology and hepatology"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0065","doi-asserted-by":"crossref","first-page":"27","DOI":"10.4103\/EUS-D-21-00102","article-title":"Controversies in ERCP: Technical aspects","volume":"11","author":"Dietrich","year":"2022","journal-title":"Endoscopic Ultrasound"},{"issue":"10","key":"10.1016\/j.eswa.2024.125146_b0070","doi-asserted-by":"crossref","first-page":"e0258498","DOI":"10.1371\/journal.pone.0258498","article-title":"Identifying modifiable risk factors of lung cancer: Indications from Mendelian randomization","volume":"16","author":"Ding","year":"2021","journal-title":"Plos one"},{"issue":"08","key":"10.1016\/j.eswa.2024.125146_b0075","doi-asserted-by":"crossref","first-page":"763","DOI":"10.1055\/a-0848-8271","article-title":"Sphincterotomy plus balloon dilation versus sphincterotomy alone for choledocholithiasis: A meta-analysis","volume":"51","author":"Dong","year":"2019","journal-title":"Endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0080","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., .. & Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929."},{"year":"2021","series-title":"AI-based prediction model of surgical difficulty in laparoscopic cholecystectomy","author":"Egging","key":"10.1016\/j.eswa.2024.125146_b0085"},{"key":"10.1016\/j.eswa.2024.125146_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.health.2023.100166","article-title":"A robust predictive diagnosis model for diabetes mellitus using Shapley-incorporated machine learning algorithms","volume":"3","author":"Ejiyi","year":"2023","journal-title":"Healthcare Analytics"},{"issue":"10","key":"10.1016\/j.eswa.2024.125146_b0095","doi-asserted-by":"crossref","first-page":"E943","DOI":"10.1055\/a-2164-8557","article-title":"Predictors of success of conventional ERCP for bile duct stones and need for single-operator cholangioscopy","volume":"11","author":"El Menabawey","year":"2023","journal-title":"Endoscopy International Open"},{"key":"10.1016\/j.eswa.2024.125146_b0105","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1007\/s00464-016-5004-9","article-title":"Diclofenac sodium versus ceftazidime for preventing pancreatitis after endoscopic retrograde cholangiopancreatography: A prospective, randomized, controlled trial","volume":"31","author":"Hauser","year":"2017","journal-title":"Surgical endoscopy"},{"issue":"12","key":"10.1016\/j.eswa.2024.125146_b0110","doi-asserted-by":"crossref","first-page":"3532","DOI":"10.1111\/jgh.15569","article-title":"Efficacy of an artificial neural network algorithm based on thick-slab magnetic resonance cholangiopancreatography images for the automated diagnosis of common bile duct stones","volume":"36","author":"Hou","year":"2021","journal-title":"Journal of Gastroenterology and Hepatology"},{"issue":"3","key":"10.1016\/j.eswa.2024.125146_b0115","doi-asserted-by":"crossref","first-page":"1117","DOI":"10.1007\/s40121-022-00628-6","article-title":"Interpretable machine learning for early prediction of prognosis in sepsis: A discovery and validation study","volume":"11","author":"Hu","year":"2022","journal-title":"Infectious diseases and therapy"},{"issue":"05","key":"10.1016\/j.eswa.2024.125146_b0120","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1055\/a-1244-5698","article-title":"Intelligent difficulty scoring and assistance system for endoscopic extraction of common bile duct stones based on deep learning: Multicenter study","volume":"53","author":"Huang","year":"2021","journal-title":"Endoscopy"},{"issue":"01","key":"10.1016\/j.eswa.2024.125146_b0125","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1055\/a-1850-6717","article-title":"An artificial intelligence difficulty scoring system for stone removal during ERCP: A prospective validation","volume":"55","author":"Huang","year":"2023","journal-title":"Endoscopy"},{"issue":"8","key":"10.1016\/j.eswa.2024.125146_b0130","doi-asserted-by":"crossref","first-page":"1364","DOI":"10.1200\/JCO.2007.12.9791","article-title":"How to build and interpret a nomogram for cancer prognosis","volume":"26","author":"Iasonos","year":"2008","journal-title":"Journal of Clinical Oncology"},{"issue":"11","key":"10.1016\/j.eswa.2024.125146_b0135","doi-asserted-by":"crossref","first-page":"1881","DOI":"10.12998\/wjcc.v12.i11.1881","article-title":"Removal of intrahepatic bile duct stone could reduce the risk of cholangiocarcinoma","volume":"12","author":"Jagirdhar","year":"2024","journal-title":"World Journal of Clinical Cases"},{"key":"10.1016\/j.eswa.2024.125146_b0140","doi-asserted-by":"crossref","first-page":"e23112","DOI":"10.1590\/s0004-2803.24612023-112","article-title":"Predictors of failure of endoscopic retrograde cholangiopancreatography in clearing bile duct stones during index procedure-a prospective study","volume":"61","author":"Kamuni","year":"2024","journal-title":"Arquivos de Gastroenterologia"},{"key":"10.1016\/j.eswa.2024.125146_b0145","unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems, 25."},{"key":"10.1016\/j.eswa.2024.125146_b0150","first-page":"1","article-title":"Artificial Intelligence-Assisted Visual Sensing Technology under Duodenoscopy of Gallbladder Stones","volume":"2021","author":"Li","year":"2021","journal-title":"Journal of Sensors"},{"issue":"7","key":"10.1016\/j.eswa.2024.125146_b0155","doi-asserted-by":"crossref","first-page":"9515","DOI":"10.1109\/JSEN.2021.3055898","article-title":"A hybrid posture detection framework: Integrating machine learning and deep neural networks","volume":"21","author":"Liaqat","year":"2021","journal-title":"IEEE Sensors Journal"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0160","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1186\/s12876-023-03096-5","article-title":"Bile ductal mucosal dysplasia is a possible risk factor for adenocarcinoma in patients with adenomyomatous hyperplasia of the Vaterian system: A single-centre study from China","volume":"24","author":"Liu","year":"2024","journal-title":"BMC gastroenterology"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0165","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1038\/s42256-019-0138-9","article-title":"From local explanations to global understanding with explainable AI for trees","volume":"2","author":"Lundberg","year":"2020","journal-title":"Nature Machine Intelligence"},{"key":"10.1016\/j.eswa.2024.125146_b0170","article-title":"A unified approach to interpreting model predictions","volume":"30","author":"Lundberg","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0175","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1080\/00365521.2023.2257825","article-title":"Using deep learning models in magnetic resonance cholangiopancreatography images to diagnose common bile duct stones","volume":"59","author":"Luo","year":"2024","journal-title":"Scandinavian Journal of Gastroenterology"},{"key":"10.1016\/j.eswa.2024.125146_b0180","unstructured":"Mao, A., Mohri, M., & Zhong, Y. (2023). Cross-entropy loss functions: Theoretical analysis and applications. arXiv preprint arXiv:2304.07288."},{"issue":"10","key":"10.1016\/j.eswa.2024.125146_b0185","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1055\/a-0942-9336","article-title":"Cholangioscopy-guided lithotripsy for difficult bile duct stone clearance in a single session of ERCP: Results from a large multinational registry demonstrate high success rates","volume":"51","author":"Maydeo","year":"2019","journal-title":"Endoscopy"},{"issue":"10","key":"10.1016\/j.eswa.2024.125146_b0190","doi-asserted-by":"crossref","first-page":"1543","DOI":"10.1093\/ibd\/izab329","article-title":"Causal association between atopic dermatitis and inflammatory Bowel disease: A 2-sample bidirectional mendelian randomization study","volume":"28","author":"Meisinger","year":"2022","journal-title":"Inflammatory Bowel Diseases"},{"issue":"10","key":"10.1016\/j.eswa.2024.125146_b0195","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2009","journal-title":"IEEE Transactions on knowledge and data engineering"},{"key":"10.1016\/j.eswa.2024.125146_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2020.110190","article-title":"A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images","volume":"140","author":"Panwar","year":"2020","journal-title":"Chaos, Solitons & Fractals"},{"issue":"02","key":"10.1016\/j.eswa.2024.125146_b0205","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1055\/a-0639-5147","article-title":"Comparison of endoscopic papillary large balloon dilation with or without endoscopic sphincterotomy for the treatment of large bile duct stones","volume":"51","author":"Park","year":"2019","journal-title":"Endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.aap.2019.105405","article-title":"Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis","volume":"136","author":"Parsa","year":"2020","journal-title":"Accident Analysis & Prevention"},{"issue":"6","key":"10.1016\/j.eswa.2024.125146_b0220","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1159\/000507321","article-title":"Risk factors for success, complications, and death after endoscopic sphincterotomy for bile duct stones: A 17-year Experience with 2,137 cases","volume":"38","author":"Pereira Lima","year":"2020","journal-title":"Digestive Diseases"},{"issue":"4","key":"10.1016\/j.eswa.2024.125146_b0225","doi-asserted-by":"crossref","first-page":"e150","DOI":"10.1097\/MCG.0000000000001000","article-title":"Large balloon dilatation versus mechanical lithotripsy after endoscopic sphincterotomy in the management of large common bile duct stones in cirrhotic patients: A randomized study","volume":"53","author":"Radwan","year":"2019","journal-title":"Journal of Clinical Gastroenterology"},{"issue":"9","key":"10.1016\/j.eswa.2024.125146_b0230","doi-asserted-by":"crossref","first-page":"6682","DOI":"10.1007\/s00464-023-10276-7","article-title":"Safety and efficacy of LA-ERCP procedure following Roux-en-Y gastric bypass: A systematic review and meta-analysis","volume":"37","author":"Saad","year":"2023","journal-title":"Surgical Endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0235","doi-asserted-by":"crossref","unstructured":"Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).","DOI":"10.1109\/ICCV.2017.74"},{"issue":"7","key":"10.1016\/j.eswa.2024.125146_b0240","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.1007\/s10620-023-07949-7","article-title":"Predicting the recurrence of common bile duct stones after ERCP treatment with automated machine learning algorithms","volume":"68","author":"Shi","year":"2023","journal-title":"Digestive Diseases and Sciences"},{"issue":"1","key":"10.1016\/j.eswa.2024.125146_b0245","doi-asserted-by":"crossref","first-page":"12","DOI":"10.11613\/BM.2014.003","article-title":"Understanding logistic regression analysis","volume":"24","author":"Sperandei","year":"2014","journal-title":"Biochemia Medica"},{"issue":"2","key":"10.1016\/j.eswa.2024.125146_b0250","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1038\/ajg.2010.421","article-title":"Large balloon dilation vs. mechanical lithotripsy for the management of large bile duct stones: A prospective randomized study","volume":"106","author":"Stefanidis","year":"2011","journal-title":"Official journal of the American College of Gastroenterology| ACG"},{"issue":"03","key":"10.1016\/j.eswa.2024.125146_b0255","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1055\/a-2174-0534","article-title":"A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: A proof-of-concept study","volume":"56","author":"Steinway","year":"2024","journal-title":"Endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0260","doi-asserted-by":"crossref","DOI":"10.1016\/j.crad.2024.02.018","article-title":"Convolutional neural network for identifying common bile duct stones based on magnetic resonance cholangiopancreatography","author":"Sun","year":"2024","journal-title":"Clinical Radiology"},{"issue":"4","key":"10.1016\/j.eswa.2024.125146_b0265","doi-asserted-by":"crossref","first-page":"795","DOI":"10.3390\/medicina59040795","article-title":"Efficacy and safety of electrohydraulic lithotripsy using peroral cholangioscopy under endoscopic retrograde cholangiopancreatography guidance in older adults: A single-center retrospective study","volume":"59","author":"Takahashi","year":"2023","journal-title":"Medicina"},{"key":"10.1016\/j.eswa.2024.125146_b0270","series-title":"Handbook of research on machine learning applications and trends: algorithms, methods, and techniques","first-page":"242","article-title":"Transfer learning","author":"Torrey","year":"2010"},{"key":"10.1016\/j.eswa.2024.125146_b0275","series-title":"International Conference on Machine Learning","first-page":"10347","article-title":"Training data-efficient image transformers & distillation through attention","author":"Touvron","year":"2021"},{"issue":"44","key":"10.1016\/j.eswa.2024.125146_b0280","doi-asserted-by":"crossref","first-page":"7597","DOI":"10.3748\/wjg.v27.i44.7597","article-title":"Endoscopic management of difficult common bile duct stones: Where are we now? A comprehensive review","volume":"27","author":"Tringali","year":"2021","journal-title":"World Journal of Gastroenterology"},{"key":"10.1016\/j.eswa.2024.125146_b0285","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"07","key":"10.1016\/j.eswa.2024.125146_b0290","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1055\/s-0032-1309345","article-title":"What predicts failed cannulation and therapy at ERCP? Results of a large-scale multicenter analysis","volume":"44","author":"Williams","year":"2012","journal-title":"Endoscopy"},{"key":"10.1016\/j.eswa.2024.125146_b0295","doi-asserted-by":"crossref","unstructured":"Zhang, L., & Zhan, C. (2017, May). Machine learning in rock facies classification: An application of XGBoost. In International Geophysical Conference, Qingdao, China, 17-20 April 2017 (pp. 1371-1374). Society of Exploration Geophysicists and Chinese Petroleum Society.","DOI":"10.1190\/IGC2017-351"},{"issue":"2","key":"10.1016\/j.eswa.2024.125146_b0300","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1177\/1536867X1501500212","article-title":"A general-purpose nomogram generator for predictive logistic regression models","volume":"15","author":"Zlotnik","year":"2015","journal-title":"The Stata Journal"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742402013X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742402013X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:47:02Z","timestamp":1726102022000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741742402013X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":57,"alternative-id":["S095741742402013X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125146","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Artificial intelligence-empowered assessment of bile duct stone removal challenges","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125146","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"125146"}}