{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:34:35Z","timestamp":1742646875298,"version":"3.37.3"},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004608","name":"Jiangsu Province Natural Science Foundation","doi-asserted-by":"publisher","award":["BK20211201"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004004","name":"Universit\u00e0 degli Studi di Trento","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004004","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62071168"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.eswa.2024.125145","type":"journal-article","created":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T23:04:46Z","timestamp":1724367886000},"page":"125145","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A cross-modal feature aggregation and enhancement network for hyperspectral and LiDAR joint classification"],"prefix":"10.1016","volume":"258","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7584-381X","authenticated-orcid":false,"given":"Yiyan","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8404-2464","authenticated-orcid":false,"given":"Hongmin","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Chenkai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Pedram","family":"Ghamisi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6802-9083","authenticated-orcid":false,"given":"Shufang","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Chenming","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bing","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.eswa.2024.125145_b1","doi-asserted-by":"crossref","first-page":"1860","DOI":"10.1109\/TIP.2005.854479","article-title":"Super-resolution reconstruction of hyperspectral images","volume":"14","author":"Akgun","year":"2005","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.125145_b2","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.isprsjprs.2018.01.014","article-title":"Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using scidb and GDAL","volume":"138","author":"Appel","year":"2018","journal-title":"ISPRS Journal of Photogrammetry and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b3","series-title":"International conference on machine learning","first-page":"573","article-title":"Invertible residual networks","author":"Behrmann","year":"2019"},{"issue":"3","key":"10.1016\/j.eswa.2024.125145_b4","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1109\/TGRS.2004.842478","article-title":"Classification of hyperspectral data from urban areas based on extended morphological profiles","volume":"43","author":"Benediktsson","year":"2005","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"2","key":"10.1016\/j.eswa.2024.125145_b5","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2013.2244672","article-title":"Hyperspectral remote sensing data analysis and future challenges","volume":"1","author":"Bioucas-Dias","year":"2013","journal-title":"IEEE Geoscience and Remote Sensing Magazine"},{"issue":"4","key":"10.1016\/j.eswa.2024.125145_b6","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1109\/MGRS.2021.3071158","article-title":"Spectral variability in hyperspectral data unmixing: A comprehensive review","volume":"9","author":"Borsoi","year":"2021","journal-title":"IEEE Geoscience and Remote Sensing Magazine"},{"issue":"1","key":"10.1016\/j.eswa.2024.125145_b7","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1109\/LGRS.2005.857031","article-title":"Composite kernels for hyperspectral image classification","volume":"3","author":"Camps-Valls","year":"2006","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"7","key":"10.1016\/j.eswa.2024.125145_b8","doi-asserted-by":"crossref","first-page":"5979","DOI":"10.1109\/TGRS.2020.3024602","article-title":"Self-mutual information-based band selection for hyperspectral image classification","volume":"59","author":"Chang","year":"2020","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"8","key":"10.1016\/j.eswa.2024.125145_b9","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1109\/LGRS.2017.2704625","article-title":"Deep fusion of remote sensing data for accurate classification","volume":"14","author":"Chen","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"12","key":"10.1016\/j.eswa.2024.125145_b10","doi-asserted-by":"crossref","first-page":"2215","DOI":"10.1080\/01431169608948770","article-title":"Review article hyperspectral geological remote sensing: evaluation of analytical techniques","volume":"17","author":"Cloutis","year":"1996","journal-title":"International Journal of Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b11","first-page":"1","article-title":"Global\u2013local transformer network for HSI and LiDAR data joint classification","volume":"60","author":"Ding","year":"2022","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b12","doi-asserted-by":"crossref","first-page":"5754","DOI":"10.1109\/TIP.2021.3078058","article-title":"Model-guided deep hyperspectral image super-resolution","volume":"30","author":"Dong","year":"2021","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.125145_b13","first-page":"1","article-title":"S2ENet: Spatial\u2013spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data","volume":"19","author":"Fang","year":"2021","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.eswa.2024.125145_b14","first-page":"1","article-title":"AMSSE-net: Adaptive multiscale spatial\u2013spectral enhancement network for classification of hyperspectral and LiDAR data","volume":"61","author":"Gao","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b15","doi-asserted-by":"crossref","first-page":"8180","DOI":"10.1109\/JSTARS.2021.3103176","article-title":"A multiscale dual-branch feature fusion and attention network for hyperspectral images classification","volume":"14","author":"Gao","year":"2021","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"10","key":"10.1016\/j.eswa.2024.125145_b16","doi-asserted-by":"crossref","first-page":"1271","DOI":"10.3390\/mi12101271","article-title":"A 3D-2D multibranch feature fusion and dense attention network for hyperspectral image classification","volume":"12","author":"Gao","year":"2021","journal-title":"Micromachines"},{"issue":"3","key":"10.1016\/j.eswa.2024.125145_b17","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1080\/19479832.2015.1055833","article-title":"Land-cover classification using both hyperspectral and LiDAR data","volume":"6","author":"Ghamisi","year":"2015","journal-title":"International Journal of Image and Data Fusion"},{"issue":"1","key":"10.1016\/j.eswa.2024.125145_b18","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2018.2890023","article-title":"Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art","volume":"7","author":"Ghamisi","year":"2019","journal-title":"IEEE Geoscience and Remote Sensing Magazine"},{"issue":"11","key":"10.1016\/j.eswa.2024.125145_b19","doi-asserted-by":"crossref","first-page":"1641","DOI":"10.1109\/LGRS.2016.2600244","article-title":"Hyperspectral data classification using extended extinction profiles","volume":"13","author":"Ghamisi","year":"2016","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"10","key":"10.1016\/j.eswa.2024.125145_b20","doi-asserted-by":"crossref","first-page":"5631","DOI":"10.1109\/TGRS.2016.2561842","article-title":"Extinction profiles for the classification of remote sensing data","volume":"54","author":"Ghamisi","year":"2016","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b21","article-title":"The reversible residual network: Backpropagation without storing activations","volume":"30","author":"Gomez","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"9","key":"10.1016\/j.eswa.2024.125145_b22","doi-asserted-by":"crossref","first-page":"1560","DOI":"10.1109\/JPROC.2015.2449668","article-title":"Multimodal classification of remote sensing images: A review and future directions","volume":"103","author":"G\u00f3mez-Chova","year":"2015","journal-title":"Proceedings of the IEEE"},{"key":"10.1016\/j.eswa.2024.125145_b23","series-title":"IGARSS 2023-2023 IEEE international geoscience and remote sensing symposium","first-page":"5910","article-title":"Deep self-supervised hyperspectral-lidar fusion for land cover classification","author":"Gonz\u00e1lez-Santiago","year":"2023"},{"key":"10.1016\/j.eswa.2024.125145_b24","article-title":"CMSE: Cross-modal semantic enhancement network for classification of hyperspectral and LiDAR data","author":"Han","year":"2024","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2022.3172371","article-title":"SpectralFormer: Rethinking hyperspectral image classification with transformers","volume":"60","author":"Hong","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"year":"2018","series-title":"i-revnet: Deep invertible networks","author":"Jacobsen","key":"10.1016\/j.eswa.2024.125145_b26"},{"issue":"1","key":"10.1016\/j.eswa.2024.125145_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1515\/mathm-2020-0001","article-title":"Hyperspectral image classification based on mathematical morphology and tensor decomposition","volume":"4","author":"Jouni","year":"2020","journal-title":"Mathematical Morphology-Theory and Applications"},{"issue":"24","key":"10.1016\/j.eswa.2024.125145_b28","doi-asserted-by":"crossref","first-page":"6503","DOI":"10.1109\/TSP.2018.2876362","article-title":"Hyperspectral super-resolution: A coupled tensor factorization approach","volume":"66","author":"Kanatsoulis","year":"2018","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.eswa.2024.125145_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.jag.2022.102926","article-title":"Deep learning in multimodal remote sensing data fusion: A comprehensive review","volume":"112","author":"Li","year":"2022","journal-title":"International Journal of Applied Earth Observation and Geoinformation"},{"key":"10.1016\/j.eswa.2024.125145_b30","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.inffus.2016.05.004","article-title":"Pixel-level image fusion: A survey of the state of the art","volume":"33","author":"Li","year":"2017","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2024.125145_b31","doi-asserted-by":"crossref","unstructured":"Mohla, S., Pande, S., Banerjee, B., & Chaudhuri, S. (2020). Fusatnet: Dual attention based spectrospatial multimodal fusion network for hyperspectral and lidar classification. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition workshops (pp. 92\u201393).","DOI":"10.21203\/rs.3.rs-32802\/v1"},{"key":"10.1016\/j.eswa.2024.125145_b32","first-page":"III","article-title":"Morphological attribute filters for the analysis of very high resolution remote sensing images","volume":"vol. 3","author":"Mura","year":"2009"},{"issue":"6","key":"10.1016\/j.eswa.2024.125145_b33","doi-asserted-by":"crossref","first-page":"3514","DOI":"10.1109\/TGRS.2012.2224874","article-title":"A novel technique for optimal feature selection in attribute profiles based on genetic algorithms","volume":"51","author":"Pedergnana","year":"2013","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"7","key":"10.1016\/j.eswa.2024.125145_b34","doi-asserted-by":"crossref","first-page":"3997","DOI":"10.1109\/TGRS.2017.2686450","article-title":"Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis","volume":"55","author":"Rasti","year":"2017","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"11","key":"10.1016\/j.eswa.2024.125145_b35","doi-asserted-by":"crossref","first-page":"6354","DOI":"10.1109\/TGRS.2017.2726901","article-title":"Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis","volume":"55","author":"Rasti","year":"2017","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2023.107737","article-title":"Lidar applications in precision agriculture for cultivating crops: A review of recent advances","volume":"207","author":"Rivera","year":"2023","journal-title":"Computers and Electronics in Agriculture"},{"key":"10.1016\/j.eswa.2024.125145_b37","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2023.3286826","article-title":"Multimodal fusion transformer for remote sensing image classification","author":"Roy","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b38","first-page":"1","article-title":"Spectral\u2013spatial morphological attention transformer for hyperspectral image classification","volume":"61","author":"Roy","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"4","key":"10.1016\/j.eswa.2024.125145_b39","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1080\/01431161.2012.717183","article-title":"Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area\u2013a comparative study","volume":"34","author":"Stal","year":"2013","journal-title":"International Journal of Remote Sensing"},{"issue":"2","key":"10.1016\/j.eswa.2024.125145_b40","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1109\/TSP.2015.2486746","article-title":"Hyperspectral unmixing with spectral variability using a perturbed linear mixing model","volume":"64","author":"Thouvenin","year":"2015","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.eswa.2024.125145_b41","article-title":"Dual-branch feature fusion network based cross-modal enhanced CNN and transformer for hyperspectral and LiDAR classification","author":"Wang","year":"2024","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.eswa.2024.125145_b42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2020.3040277","article-title":"Convolutional neural networks for multimodal remote sensing data classification","volume":"60","author":"Wu","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b43","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1109\/JSTARS.2020.2969119","article-title":"Geometric primitives in LiDAR point clouds: A review","volume":"13","author":"Xia","year":"2020","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.ophoto.2023.100032","article-title":"Point cloud registration for LiDAR and photogrammetric data: A critical synthesis and performance analysis on classic and deep learning algorithms","volume":"8","author":"Xu","year":"2023","journal-title":"ISPRS Open Journal of Photogrammetry and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b45","doi-asserted-by":"crossref","first-page":"3095","DOI":"10.1109\/TIP.2022.3162964","article-title":"Deep hierarchical vision transformer for hyperspectral and LiDAR data classification","volume":"31","author":"Xue","year":"2022","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.125145_b46","article-title":"TMCFN: Text-supervised multidimensional contrastive fusion network for hyperspectral and LiDAR classification","author":"Yang","year":"2024","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b47","doi-asserted-by":"crossref","DOI":"10.1109\/TGRS.2023.3284671","article-title":"Extended vision transformer (ExViT) for land use and land cover classification: A multimodal deep learning framework","author":"Yao","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b48","series-title":"ICASSP 2024-2024 IEEE international conference on acoustics, speech and signal processing","first-page":"5390","article-title":"Joint classification of hyperspectral and lidar data using cross-modal hierarchical frequency fusion network","author":"Zeng","year":"2024"},{"key":"10.1016\/j.eswa.2024.125145_b49","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.inffus.2022.12.027","article-title":"A multi-source information fusion model for outlier detection","volume":"93","author":"Zhang","year":"2023","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2024.125145_b50","first-page":"1","article-title":"Morphological transformation and spatial-logical aggregation for tree species classification using hyperspectral imagery","volume":"61","author":"Zhang","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b51","first-page":"1","article-title":"Spectral variability augmented sparse unmixing of hyperspectral images","volume":"60","author":"Zhang","year":"2022","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"17","key":"10.1016\/j.eswa.2024.125145_b52","doi-asserted-by":"crossref","first-page":"4148","DOI":"10.3390\/rs15174148","article-title":"Feature-decision level collaborative fusion network for hyperspectral and LiDAR classification","volume":"15","author":"Zhang","year":"2023","journal-title":"Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b53","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.122125","article-title":"A dual-branch siamese spatial-spectral transformer attention network for hyperspectral image change detection","volume":"238","author":"Zhang","year":"2024","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.125145_b54","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1007\/s12665-011-1112-y","article-title":"Application of hyperspectral remote sensing for environment monitoring in mining areas","volume":"65","author":"Zhang","year":"2012","journal-title":"Environmental Earth Sciences"},{"key":"10.1016\/j.eswa.2024.125145_b55","first-page":"1","article-title":"Multimodal transformer network for hyperspectral and lidar classification","volume":"61","author":"Zhang","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125145_b56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2023.3329687","article-title":"Depthwise separable convolutional autoencoders for hyperspectral image change detection","volume":"20","author":"Zhang","year":"2023","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.eswa.2024.125145_b57","series-title":"Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition","first-page":"5906","article-title":"Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion","author":"Zhao","year":"2023"},{"key":"10.1016\/j.eswa.2024.125145_b58","article-title":"Fractional Fourier image transformer for multimodal remote sensing data classification","author":"Zhao","year":"2022","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"4","key":"10.1016\/j.eswa.2024.125145_b59","doi-asserted-by":"crossref","first-page":"527","DOI":"10.3390\/rs10040527","article-title":"Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions","volume":"10","author":"Zhu","year":"2018","journal-title":"Remote Sensing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424020128?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424020128?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:07:13Z","timestamp":1726013233000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424020128"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":59,"alternative-id":["S0957417424020128"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125145","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A cross-modal feature aggregation and enhancement network for hyperspectral and LiDAR joint classification","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125145","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"125145"}}