{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T00:21:57Z","timestamp":1725754917726},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.eswa.2024.125132","type":"journal-article","created":{"date-parts":[[2024,8,15]],"date-time":"2024-08-15T15:33:05Z","timestamp":1723735985000},"page":"125132","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multi-level interactive fusion network based on adversarial learning for fusion classification of hyperspectral and LiDAR data"],"prefix":"10.1016","volume":"257","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0010-4198","authenticated-orcid":false,"given":"Yingying","family":"Fan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6564-4745","authenticated-orcid":false,"given":"Yurong","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Weijun","family":"Gong","sequence":"additional","affiliation":[]},{"given":"Zhuang","family":"Chu","sequence":"additional","affiliation":[]},{"given":"Yugang","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Palidan","family":"Muhetaer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.125132_b0005","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1109\/JSTARS.2021.3133021","article-title":"Hyperspectral image classification-traditional to deep models: A survey for future prospects","volume":"15","author":"Ahmad","year":"2022","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0010","doi-asserted-by":"crossref","first-page":"5424","DOI":"10.1109\/JSTARS.2020.3022781","article-title":"Structure aware generative adversarial networks for hyperspectral image classification","volume":"13","author":"Alipour-Fard","year":"2020","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0015","series-title":"Proceedings of the 34th International Conference on Machine Learning","first-page":"214","article-title":"Wasserstein generative adversarial networks","author":"Arjovsky","year":"2017"},{"issue":"3","key":"10.1016\/j.eswa.2024.125132_b0020","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1109\/TGRS.2004.842478","article-title":"Classification of hyperspectral data from urban areas based on extended morphological profiles","volume":"43","author":"Benediktsson","year":"2005","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0025","doi-asserted-by":"crossref","DOI":"10.1109\/JSTARS.2021.3113658","article-title":"Remote sensing image super-resolution via residual aggregation and split attentional fusion network","author":"Chen","year":"2021","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"8","key":"10.1016\/j.eswa.2024.125132_b0030","doi-asserted-by":"crossref","first-page":"1253","DOI":"10.1109\/LGRS.2017.2704625","article-title":"Deep fusion of remote sensing data for accurate classification","volume":"14","author":"Chen","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"6","key":"10.1016\/j.eswa.2024.125132_b0035","doi-asserted-by":"crossref","first-page":"2405","DOI":"10.1109\/JSTARS.2014.2305441","article-title":"Hyperspectral and LiDAR data fusion: Outcome of the 2013 GRSS data fusion contest","volume":"7","author":"Debes","year":"2014","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0040","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.rse.2018.11.026","article-title":"Enhancing the performance of Multiple Endmember Spectral Mixture Analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection","volume":"221","author":"Degerickx","year":"2019","journal-title":"Remote Sensing of Environment"},{"key":"10.1016\/j.eswa.2024.125132_b0045","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (arXiv:2010.11929). arXiv. http:\/\/arxiv.org\/abs\/2010.11929."},{"key":"10.1016\/j.eswa.2024.125132_b0050","doi-asserted-by":"crossref","first-page":"10041","DOI":"10.1109\/JSTARS.2022.3221098","article-title":"MSLAENet: Multiscale learning and attention enhancement network for fusion classification of hyperspectral and LiDAR data","volume":"15","author":"Fan","year":"2022","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0055","first-page":"1","article-title":"S2ENet: Spatial-spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data","volume":"19","author":"Fang","year":"2022","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.eswa.2024.125132_b0060","first-page":"1","article-title":"Multi-complementary generative adversarial networks with contrastive learning for hyperspectral image classification","volume":"61","author":"Feng","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0065","unstructured":"Gader, P., Zare, A., & Close, R. (2013). MUUFL Gulfport hyperspectral and LiDAR airborne data set. Univ. Florida, Gainesville, FL, USA, Tech. Rep, REP-2013-570."},{"key":"10.1016\/j.eswa.2024.125132_b0070","first-page":"1","article-title":"AMSSE-Net: Adaptive multiscale spatial-spectral enhancement network for classification of hyperspectral and LiDAR data","volume":"61","author":"Gao","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0075","doi-asserted-by":"crossref","first-page":"10990","DOI":"10.1109\/JSTARS.2021.3119654","article-title":"STransFuse: Fusing swin transformer and convolutional neural network for remote sensing image semantic segmentation","volume":"14","author":"Gao","year":"2021","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"3","key":"10.1016\/j.eswa.2024.125132_b0080","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1080\/19479832.2015.1055833","article-title":"Land-cover classification using both hyperspectral and LiDAR data","volume":"6","author":"Ghamisi","year":"2015","journal-title":"International Journal of Image and Data Fusion"},{"issue":"1","key":"10.1016\/j.eswa.2024.125132_b0085","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2018.2890023","article-title":"Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art","volume":"7","author":"Ghamisi","year":"2019","journal-title":"IEEE Geoscience and Remote Sensing Magazine"},{"issue":"10","key":"10.1016\/j.eswa.2024.125132_b0090","doi-asserted-by":"crossref","first-page":"5631","DOI":"10.1109\/TGRS.2016.2561842","article-title":"Extinction profiles for the classification of remote sensing data","volume":"54","author":"Ghamisi","year":"2016","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"11","key":"10.1016\/j.eswa.2024.125132_b0095","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Communications of the ACM"},{"issue":"7","key":"10.1016\/j.eswa.2024.125132_b0100","doi-asserted-by":"crossref","first-page":"4939","DOI":"10.1109\/TGRS.2020.2969024","article-title":"Classification of hyperspectral and LiDAR data using coupled CNNs","volume":"58","author":"Hang","year":"2020","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/LGRS.2022.3214929","article-title":"Deep encoder\u2013decoder networks for classification of hyperspectral and LiDAR data","volume":"19","author":"Hong","year":"2022","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"5","key":"10.1016\/j.eswa.2024.125132_b0110","doi-asserted-by":"crossref","first-page":"4340","DOI":"10.1109\/TGRS.2020.3016820","article-title":"More diverse means better: Multimodal deep learning meets remote-sensing imagery classification","volume":"59","author":"Hong","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0115","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.isprsjprs.2021.05.011","article-title":"Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model","volume":"178","author":"Hong","year":"2021","journal-title":"ISPRS Journal of Photogrammetry and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0120","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.rse.2018.04.050","article-title":"Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery","volume":"214","author":"Huang","year":"2018","journal-title":"Remote Sensing of Environment"},{"key":"10.1016\/j.eswa.2024.125132_b0125","doi-asserted-by":"crossref","first-page":"1257","DOI":"10.1109\/JSTARS.2023.3338978","article-title":"MLKNet: Multi-stage for remote sensing image spatiotemporal fusion network based on a large kernel attention","volume":"17","author":"Jiang","year":"2024","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.jag.2022.102734","article-title":"A review and meta-analysis of Generative Adversarial Networks and their applications in remote sensing","volume":"108","author":"Jozdani","year":"2022","journal-title":"International Journal of Applied Earth Observation and Geoinformation"},{"issue":"5","key":"10.1016\/j.eswa.2024.125132_b0135","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1109\/LGRS.2017.2681128","article-title":"Deep learning classification of land cover and crop types using remote sensing data","volume":"14","author":"Kussul","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"10","key":"10.1016\/j.eswa.2024.125132_b0140","doi-asserted-by":"crossref","first-page":"4843","DOI":"10.1109\/TIP.2017.2725580","article-title":"Going deeper with contextual CNN for hyperspectral image classification","volume":"26","author":"Lee","year":"2017","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.125132_b0145","doi-asserted-by":"crossref","first-page":"4381","DOI":"10.1109\/JSTARS.2021.3073719","article-title":"EMFNet: Enhanced multisource fusion network for land cover classification","volume":"14","author":"Li","year":"2021","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.jag.2022.102926","article-title":"Deep learning in multimodal remote sensing data fusion: A comprehensive review","volume":"112","author":"Li","year":"2022","journal-title":"International Journal of Applied Earth Observation and Geoinformation"},{"issue":"2","key":"10.1016\/j.eswa.2024.125132_b0155","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1109\/TNNLS.2020.3028945","article-title":"A3CLNN: Spatial, spectral and multiscale attention ConvLSTM neural network for multisource remote sensing data classification","volume":"33","author":"Li","year":"2022","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2024.125132_b0160","doi-asserted-by":"crossref","first-page":"5728","DOI":"10.1109\/JSTARS.2023.3284655","article-title":"Morphological convolution and attention calibration network for hyperspectral and LiDAR data classification","volume":"16","author":"Li","year":"2023","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"3","key":"10.1016\/j.eswa.2024.125132_b0165","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1109\/LGRS.2014.2350263","article-title":"Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features","volume":"12","author":"Liao","year":"2015","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"2","key":"10.1016\/j.eswa.2024.125132_b0170","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/MGRS.2022.3165967","article-title":"Remote Sensing Data Fusion With Generative Adversarial Networks: State-of-the-art methods and future research directions","volume":"10","author":"Liu","year":"2022","journal-title":"IEEE Geoscience and Remote Sensing Magazine"},{"issue":"12","key":"10.1016\/j.eswa.2024.125132_b0175","doi-asserted-by":"crossref","first-page":"10227","DOI":"10.1109\/TGRS.2020.3042974","article-title":"PSGAN: A generative adversarial network for remote sensing image pan-sharpening","volume":"59","author":"Liu","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0180","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.inffus.2022.12.020","article-title":"Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data","volume":"93","author":"Lu","year":"2023","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2024.125132_b0185","doi-asserted-by":"crossref","first-page":"4980","DOI":"10.1109\/TIP.2020.2977573","article-title":"DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion","volume":"29","author":"Ma","year":"2020","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.125132_b0190","series-title":"IGARSS 2003. 2003 IEEE international geoscience and remote sensing symposium. Proceedings (IEEE Cat. No.03CH37477), 1","first-page":"288","article-title":"Support vector machines for hyperspectral image classification with spectral-based kernels","author":"Mercier","year":"2003"},{"key":"10.1016\/j.eswa.2024.125132_b0195","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neucom.2023.03.025","article-title":"Land use and land cover classification with hyperspectral data: A comprehensive review of methods, challenges and future directions","volume":"536","author":"Moharram","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2024.125132_b0200","series-title":"Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition workshops","first-page":"92","article-title":"FusAtNet: Dual attention based SpectroSpatial multimodal fusion network for hyperspectral and LiDAR classification","author":"Mohla","year":"2020"},{"issue":"7","key":"10.1016\/j.eswa.2024.125132_b0205","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1109\/JSTSP.2012.2208177","article-title":"Classification of remote sensing optical and LiDAR data using extended attribute profiles","volume":"6","author":"Pedergnana","year":"2012","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"issue":"7","key":"10.1016\/j.eswa.2024.125132_b0210","doi-asserted-by":"crossref","first-page":"3997","DOI":"10.1109\/TGRS.2017.2686450","article-title":"Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis","volume":"55","author":"Rasti","year":"2017","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"11","key":"10.1016\/j.eswa.2024.125132_b0215","doi-asserted-by":"crossref","first-page":"6354","DOI":"10.1109\/TGRS.2017.2726901","article-title":"Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis","volume":"55","author":"Rasti","year":"2017","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0220","doi-asserted-by":"crossref","unstructured":"Roy, S. K., Rasti, B., & Chanussot, J. (2023). Multimodal fusion transformer for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 61.","DOI":"10.1109\/TGRS.2023.3286826"},{"key":"10.1016\/j.eswa.2024.125132_b0225","first-page":"1","article-title":"Joint Classification of hyperspectral and LiDAR data using height information guided hierarchical fusion-and-separation network","volume":"62","author":"Song","year":"2024","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0230","first-page":"1","article-title":"BGFNet: Semantic segmentation network based on boundary guidance","volume":"21","author":"Sun","year":"2024","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"12","key":"10.1016\/j.eswa.2024.125132_b0235","doi-asserted-by":"crossref","first-page":"1456","DOI":"10.3390\/rs11121456","article-title":"Remote sensing of snow cover using spaceborne SAR: A review","volume":"11","author":"Tsai","year":"2019","journal-title":"Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0240","series-title":"31st conference on neural information processing systems","article-title":"Attention is All you Need","author":"Vaswani","year":"2017"},{"issue":"03","key":"10.1016\/j.eswa.2024.125132_b0245","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.15.036517","article-title":"Hyperspectral images classification based on double-branch networks with attention feature fusion","volume":"15","author":"Wan","year":"2021","journal-title":"Journal of Applied Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0250","series-title":"IGARSS 2019 - 2019 IEEE international geoscience and remote sensing symposium","first-page":"2487","article-title":"Lidar data classification algorithm based on generative adversarial network","author":"Wang","year":"2019"},{"issue":"2","key":"10.1016\/j.eswa.2024.125132_b0255","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1109\/TGRS.2017.2756851","article-title":"Multisource remote sensing data classification based on convolutional neural network","volume":"56","author":"Xu","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0260","doi-asserted-by":"crossref","first-page":"4653","DOI":"10.1109\/JSTARS.2022.3179415","article-title":"MSFusion: Multistage for remote sensing image spatiotemporal fusion based on texture transformer and convolutional neural network","volume":"15","author":"Yang","year":"2022","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0265","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2020.111716","article-title":"Deep learning in environmental remote sensing: Achievements and challenges","volume":"241","author":"Yuan","year":"2020","journal-title":"Remote Sensing of Environment"},{"key":"10.1016\/j.eswa.2024.125132_b0270","article-title":"Multimodal transformer network for hyperspectral and LiDAR classification","volume":"1\u20131","author":"Zhang","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"2","key":"10.1016\/j.eswa.2024.125132_b0275","doi-asserted-by":"crossref","first-page":"845","DOI":"10.1109\/JSTARS.2014.2359136","article-title":"Ensemble multiple kernel active learning for classification of multisource remote sensing data","volume":"8","author":"Zhang","year":"2015","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.eswa.2024.125132_b0280","first-page":"1","article-title":"QIS-GAN: A lightweight adversarial network with quadtree implicit sampling for multispectral and hyperspectral image fusion","volume":"61","author":"Zhu","year":"2023","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"9","key":"10.1016\/j.eswa.2024.125132_b0285","doi-asserted-by":"crossref","first-page":"5046","DOI":"10.1109\/TGRS.2018.2805286","article-title":"Generative adversarial networks for hyperspectral image classification","volume":"56","author":"Zhu","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424019997?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424019997?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T17:35:09Z","timestamp":1725730509000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424019997"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":57,"alternative-id":["S0957417424019997"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125132","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-level interactive fusion network based on adversarial learning for fusion classification of hyperspectral and LiDAR data","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.125132","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"125132"}}