{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T04:36:42Z","timestamp":1728535002735},"reference-count":192,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T00:00:00Z","timestamp":1721865600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.eswa.2024.124888","type":"journal-article","created":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T09:02:10Z","timestamp":1722502930000},"page":"124888","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Glaucoma diagnosis in the era of deep learning: A survey"],"prefix":"10.1016","volume":"256","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3207-0129","authenticated-orcid":false,"given":"Mona","family":"Ashtari-Majlan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8112-5419","authenticated-orcid":false,"given":"Mohammad Mahdi","family":"Dehshibi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7898-1847","authenticated-orcid":false,"given":"David","family":"Masip","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b1","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/JSTSP.2021.3122886","article-title":"On the use of uncertainty in classifying aedes albopictus mosquitoes","volume":"16","author":"Adhane","year":"2022","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0207982","article-title":"A deep learning model for the detection of both advanced and early glaucoma using fundus photography","volume":"13","author":"Ahn","year":"2018","journal-title":"PLoS One"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b3","doi-asserted-by":"crossref","first-page":"8064","DOI":"10.1038\/s41598-022-12147-y","article-title":"Glaucoma diagnosis using multi-feature analysis and a deep learning technique","volume":"12","author":"Akter","year":"2022","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2024.124888_b4","series-title":"Advances in neural information processing systems","first-page":"20014","article-title":"Xcit: Cross-covariance image transformers","volume":"Vol. 34","author":"Ali","year":"2021"},{"key":"10.1016\/j.eswa.2024.124888_b5","doi-asserted-by":"crossref","first-page":"2017","DOI":"10.2147\/OPTH.S140061","article-title":"Optic disc segmentation for glaucoma screening system using fundus images","volume":"11","author":"Almazroa","year":"2017","journal-title":"Clinical Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b6","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ajo.2018.10.007","article-title":"Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images","volume":"198","author":"Asaoka","year":"2019","journal-title":"American Journal of Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b7","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ajo.2018.10.007","article-title":"Using deep learning and transfer learning to accurately diagnose early-onset glaucoma from macular optical coherence tomography images","volume":"198","author":"Asaoka","year":"2019","journal-title":"American Journal of Ophthalmology"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b8","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.ogla.2019.03.008","article-title":"Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data augmentation","volume":"2","author":"Asaoka","year":"2019","journal-title":"Ophthalmology Glaucoma"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b9","first-page":"1","article-title":"Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning","volume":"19","author":"Bajwa","year":"2019","journal-title":"BMC Medical Informatics and Decision Making"},{"key":"10.1016\/j.eswa.2024.124888_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109432","article-title":"Correlation-based feature selection using bio-inspired algorithms and optimized KELM classifier for glaucoma diagnosis","volume":"128","author":"Balasubramanian","year":"2022","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2024.124888_b11","series-title":"International conference on learning representations","first-page":"1","article-title":"BEit: BERT pre-training of image transformers","author":"Bao","year":"2022"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b12","doi-asserted-by":"crossref","first-page":"161","DOI":"10.5566\/ias.2346","article-title":"RIM-ONE DL: A unified retinal image database for assessing glaucoma using deep learning","volume":"39","author":"Batista","year":"2020","journal-title":"Image Analysis & Stereology"},{"key":"10.1016\/j.eswa.2024.124888_b13","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1007\/11744023_32","article-title":"Surf: Speeded up robust features","volume":"3951","author":"Bay","year":"2006","journal-title":"Lecture Notes in Computer Science"},{"issue":"8","key":"10.1016\/j.eswa.2024.124888_b14","doi-asserted-by":"crossref","DOI":"10.1001\/jamanetworkopen.2023.30320","article-title":"Comparison of ophthalmologist and large language model chatbot responses to online patient eye care questions","volume":"6","author":"Bernstein","year":"2023","journal-title":"JAMA Network Open"},{"key":"10.1016\/j.eswa.2024.124888_b15","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.1016\/S1474-4422(22)00173-9","article-title":"Imaging of the optic nerve: technological advances and future prospects","volume":"21","author":"Biousse","year":"2022","journal-title":"The Lancet Neurology"},{"key":"10.1016\/j.eswa.2024.124888_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106165","article-title":"Generative adversarial network and texture features applied to automatic glaucoma detection","volume":"90","author":"Bisneto","year":"2020","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2024.124888_b17","series-title":"Proceedings of the 6th ACM international conference on image and video retrieval","first-page":"401","article-title":"Representing shape with a spatial pyramid kernel","author":"Bosch","year":"2007"},{"key":"10.1016\/j.eswa.2024.124888_b18","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.ajo.2023.01.008","article-title":"Geometric deep learning to identify the critical 3D structural features of the optic nerve head for glaucoma diagnosis","volume":"250","author":"Braeu","year":"2023","journal-title":"American Journal of Ophthalmology"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b19","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/MSP.2017.2693418","article-title":"Geometric deep learning: Going beyond euclidean data","volume":"34","author":"Bronstein","year":"2017","journal-title":"IEEE Signal Processing Magazine"},{"key":"10.1016\/j.eswa.2024.124888_b20","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/154860","article-title":"Robust vessel segmentation in fundus images","volume":"2013","author":"Budai","year":"2013","journal-title":"International Journal of Biomedical Imaging"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b21","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.artmed.2008.04.005","article-title":"Identification of the optic nerve head with genetic algorithms","volume":"43","author":"Carmona","year":"2008","journal-title":"Artificial Intelligence in Medicine"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b22","doi-asserted-by":"crossref","first-page":"4828","DOI":"10.1038\/s41467-021-25138-w","article-title":"Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks","volume":"12","author":"Cen","year":"2021","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2024.124888_b23","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.knosys.2018.07.043","article-title":"Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models","volume":"161","author":"Chai","year":"2018","journal-title":"Knowledge-Based Systems"},{"issue":"5","key":"10.1016\/j.eswa.2024.124888_b24","doi-asserted-by":"crossref","DOI":"10.1167\/tvst.2.5.2","article-title":"Diagnostic performance of the ISNT rule for glaucoma based on the heidelberg retinal tomograph","volume":"2","author":"Chan","year":"2013","journal-title":"Translational Vision Science & Technology"},{"key":"10.1016\/j.eswa.2024.124888_b25","series-title":"2017 IEEE conference on computer vision and pattern recognition","first-page":"77","article-title":"PointNet: Deep learning on point sets for 3D classification and segmentation","author":"Charles","year":"2017"},{"key":"10.1016\/j.eswa.2024.124888_b26","series-title":"2021 IEEE winter conference on applications of computer vision","first-page":"3983","article-title":"Multi-task knowledge distillation for eye disease prediction","author":"Chelaramani","year":"2021"},{"key":"10.1016\/j.eswa.2024.124888_b27","series-title":"2021 IEEE\/CVF international conference on computer vision","first-page":"347","article-title":"CrossViT: Cross-attention multi-scale vision transformer for image classification","author":"Chen","year":"2021"},{"key":"10.1016\/j.eswa.2024.124888_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-019-1303-8","article-title":"Combination of enhanced depth imaging optical coherence tomography and fundus images for glaucoma screening","volume":"43","author":"Chen","year":"2019","journal-title":"Journal of Medical Systems"},{"key":"10.1016\/j.eswa.2024.124888_b29","series-title":"Computer vision \u2013 ECCV 2018","first-page":"833","article-title":"Encoder-decoder with atrous separable convolution for semantic image segmentation","author":"Chen","year":"2018"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b30","doi-asserted-by":"crossref","first-page":"106","DOI":"10.2337\/dc08-1233","article-title":"Quantitative assessment of early diabetic retinopathy using fractal analysis","volume":"32","author":"Cheung","year":"2009","journal-title":"Diabetes Care"},{"key":"10.1016\/j.eswa.2024.124888_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2019.102597","article-title":"An hybrid feature space from texture information and transfer learning for glaucoma classification","volume":"64","author":"Claro","year":"2019","journal-title":"Journal of Visual Communication and Image Representation"},{"key":"10.1016\/j.eswa.2024.124888_b32","series-title":"Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition","first-page":"9268","article-title":"Class-balanced loss based on effective number of samples","author":"Cui","year":"2019"},{"key":"10.1016\/j.eswa.2024.124888_b33","series-title":"2005 IEEE computer society conference on computer vision and pattern recognition","first-page":"886","article-title":"Histograms of oriented gradients for human detection","volume":"Vol. 1","author":"Dalal","year":"2005"},{"issue":"9","key":"10.1016\/j.eswa.2024.124888_b34","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1038\/s41591-018-0107-6","article-title":"Clinically applicable deep learning for diagnosis and referral in retinal disease","volume":"24","author":"De Fauw","year":"2018","journal-title":"Nature Medicine"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b35","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.irbm.2013.01.010","article-title":"TeleOphta: Machine learning and image processing methods for teleophthalmology","volume":"34","author":"Decenci\u00e8re","year":"2013","journal-title":"IRBM"},{"issue":"6","key":"10.1016\/j.eswa.2024.124888_b36","doi-asserted-by":"crossref","first-page":"3121","DOI":"10.1007\/s40123-023-00805-x","article-title":"The use of ChatGPT to assist in diagnosing glaucoma based on clinical case reports","volume":"12","author":"Delsoz","year":"2023","journal-title":"Ophthalmology and Therapy"},{"key":"10.1016\/j.eswa.2024.124888_b37","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.future.2021.11.018","article-title":"Explainable framework for glaucoma diagnosis by image processing and convolutional neural network synergy: Analysis with doctor evaluation","volume":"129","author":"Deperlioglu","year":"2022","journal-title":"Future Generation Computer Systems"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b38","doi-asserted-by":"crossref","first-page":"203","DOI":"10.5455\/medarh.2016.70.203-207","article-title":"Challenges in early glaucoma detection","volume":"70","author":"Dervisevic","year":"2016","journal-title":"Medical Archives"},{"key":"10.1016\/j.eswa.2024.124888_b39","series-title":"Advances in neural information processing systems","first-page":"1","article-title":"Explanations based on the missing: Towards contrastive explanations with pertinent negatives","author":"Dhurandhar","year":"2018"},{"year":"2024","series-title":"Diabetic retinopathy detection","author":"Diabetic Retinopathy Detection","key":"10.1016\/j.eswa.2024.124888_b40"},{"issue":"9","key":"10.1016\/j.eswa.2024.124888_b41","doi-asserted-by":"crossref","first-page":"2211","DOI":"10.1109\/TMI.2019.2903434","article-title":"Retinal image synthesis and semi-supervised learning for glaucoma assessment","volume":"38","author":"Diaz-Pinto","year":"2019","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2024.124888_b42","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12938-019-0649-y","article-title":"CNNs for automatic glaucoma assessment using fundus images: an extensive validation","volume":"18","author":"Diaz-Pinto","year":"2019","journal-title":"BioMedical Engineering OnLine"},{"issue":"7","key":"10.1016\/j.eswa.2024.124888_b43","doi-asserted-by":"crossref","first-page":"1016","DOI":"10.1016\/j.ophtha.2020.12.020","article-title":"Assessing glaucoma progression using machine learning trained on longitudinal visual field and clinical data","volume":"128","author":"Dixit","year":"2021","journal-title":"Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b44","series-title":"International conference on learning representations","first-page":"1","article-title":"An image is worth 16x16 words: Transformers for image recognition at scale","author":"Dosovitskiy","year":"2021"},{"issue":"6433","key":"10.1016\/j.eswa.2024.124888_b45","doi-asserted-by":"crossref","first-page":"1287","DOI":"10.1126\/science.aaw4399","article-title":"Adversarial attacks on medical machine learning","volume":"363","author":"Finlayson","year":"2019","journal-title":"Science"},{"issue":"7","key":"10.1016\/j.eswa.2024.124888_b46","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1109\/TMI.2018.2791488","article-title":"Joint optic disc and cup segmentation based on multi-label deep network and polar transformation","volume":"37","author":"Fu","year":"2018","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b47","doi-asserted-by":"crossref","first-page":"2493","DOI":"10.1109\/TMI.2018.2837012","article-title":"Disc-aware ensemble network for glaucoma screening from fundus image","volume":"37","author":"Fu","year":"2018","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2024.124888_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101798","article-title":"AGE challenge: Angle closure glaucoma evaluation in anterior segment optical coherence tomography","volume":"66","author":"Fu","year":"2020","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2024.124888_b49","series-title":"2011 24th international symposium on computer-based medical systems","first-page":"1","article-title":"RIM-ONE: An open retinal image database for optic nerve evaluation","author":"Fumero","year":"2011"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b50","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/S0146-664X(75)80008-6","article-title":"Texture analysis using gray level run lengths","volume":"4","author":"Galloway","year":"1975","journal-title":"Computer Graphics and Image Processing"},{"key":"10.1016\/j.eswa.2024.124888_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102884","article-title":"Discriminative ensemble meta-learning with co-regularization for rare fundus diseases diagnosis","volume":"89","author":"Gao","year":"2023","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2024.124888_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105855","article-title":"Glaucoma detection from raw SD-OCT volumes: A novel approach focused on spatial dependencies","volume":"200","author":"Garc\u00eda","year":"2021","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2024.124888_b53","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2021.102132","article-title":"Circumpapillary OCT-focused hybrid learning for glaucoma grading using tailored prototypical neural networks","volume":"118","author":"Garc\u00eda","year":"2021","journal-title":"Artificial Intelligence in Medicine"},{"issue":"12","key":"10.1016\/j.eswa.2024.124888_b54","doi-asserted-by":"crossref","first-page":"3421","DOI":"10.1109\/JBHI.2020.3001019","article-title":"Attention-guided 3D-CNN framework for glaucoma detection and structural-functional association using volumetric images","volume":"24","author":"George","year":"2020","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b55","series-title":"Advances in neural information processing systems","first-page":"2672","article-title":"Generative adversarial nets","volume":"Vol. 27","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.eswa.2024.124888_b56","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106910","article-title":"MTCLF: A multitask curriculum learning framework for unbiased glaucoma screenings","volume":"221","author":"Guo","year":"2022","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2024.124888_b57","doi-asserted-by":"crossref","first-page":"2567","DOI":"10.1007\/s11517-020-02237-2","article-title":"Automated glaucoma screening method based on image segmentation and feature extraction","volume":"58","author":"Guo","year":"2020","journal-title":"Medical & Biological Engineering & Computing"},{"issue":"14","key":"10.1016\/j.eswa.2024.124888_b58","doi-asserted-by":"crossref","first-page":"11885","DOI":"10.1007\/s00521-022-07078-8","article-title":"DSLN: Dual-tutor student learning network for multiracial glaucoma detection","volume":"34","author":"Guo","year":"2022","journal-title":"Neural Computing and Applications"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b59","first-page":"245","article-title":"Artificial intelligence in glaucoma: posterior segment optical coherence tomography","volume":"34","author":"Gutierrez","year":"2023","journal-title":"Current Opinion in Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b60","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-017-0859-4","article-title":"A novel adaptive deformable model for automated optic disc and cup segmentation to aid glaucoma diagnosis","volume":"42","author":"Haleem","year":"2018","journal-title":"Journal of Medical Systems"},{"issue":"6","key":"10.1016\/j.eswa.2024.124888_b61","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","volume":"SMC-3","author":"Haralick","year":"1973","journal-title":"IEEE Transactions on Systems, Man and Cybernetics"},{"key":"10.1016\/j.eswa.2024.124888_b62","series-title":"2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)","first-page":"1322","article-title":"ADASYN: Adaptive synthetic sampling approach for imbalanced learning","author":"He","year":"2008"},{"key":"10.1016\/j.eswa.2024.124888_b63","series-title":"2016 IEEE conference on computer vision and pattern recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b64","doi-asserted-by":"crossref","first-page":"20313","DOI":"10.1038\/s41598-021-99605-1","article-title":"Deep learning on fundus images detects glaucoma beyond the optic disc","volume":"11","author":"Hemelings","year":"2021","journal-title":"Scientific Reports"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b65","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1038\/s41746-023-00857-0","article-title":"A generalizable deep learning regression model for automated glaucoma screening from fundus images","volume":"6","author":"Hemelings","year":"2023","journal-title":"NPJ Digital Medicine"},{"key":"10.1016\/j.eswa.2024.124888_b66","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.108347","article-title":"End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images","volume":"116","author":"Hervella","year":"2022","journal-title":"Applied Soft Computing"},{"issue":"8","key":"10.1016\/j.eswa.2024.124888_b67","doi-asserted-by":"crossref","first-page":"951","DOI":"10.1109\/TMI.2003.815900","article-title":"Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels","volume":"22","author":"Hoover","year":"2003","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b68","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1038\/s41597-023-02424-4","article-title":"GRAPE: A multi-modal dataset of longitudinal follow-up visual field and fundus images for glaucoma management","volume":"10","author":"Huang","year":"2023","journal-title":"Scientific Data"},{"key":"10.1016\/j.eswa.2024.124888_b69","series-title":"2017 IEEE conference on computer vision and pattern recognition","first-page":"2261","article-title":"Densely connected convolutional networks","author":"Huang","year":"2017"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b70","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1007\/s11517-022-02510-6","article-title":"Glaucoma disease diagnosis with an artificial algae-based deep learning algorithm","volume":"60","author":"Ibrahim","year":"2022","journal-title":"Medical & Biological Engineering & Computing"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b71","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1109\/TBME.2019.2913211","article-title":"JointRCNN: A region-based convolutional neural network for optic disc and cup segmentation","volume":"67","author":"Jiang","year":"2020","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2024.124888_b72","series-title":"2018 40th annual international conference of the IEEE engineering in medicine and biology society","first-page":"862","article-title":"Optic disc and cup segmentation with blood vessel removal from fundus images for glaucoma detection","author":"Jiang","year":"2018"},{"issue":"10108","key":"10.1016\/j.eswa.2024.124888_b73","doi-asserted-by":"crossref","first-page":"2183","DOI":"10.1016\/S0140-6736(17)31469-1","article-title":"Glaucoma","volume":"390","author":"Jonas","year":"2017","journal-title":"The Lancet"},{"key":"10.1016\/j.eswa.2024.124888_b74","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115211","article-title":"TRk-CNN: Transferable ranking-CNN for image classification of glaucoma, glaucoma suspect, and normal eyes","volume":"182","author":"Jun","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124888_b75","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117202","article-title":"Fused framework for glaucoma diagnosis using optical coherence tomography (OCT) images","volume":"201","author":"Juneja","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124888_b76","doi-asserted-by":"crossref","first-page":"15531","DOI":"10.1007\/s11042-019-7460-4","article-title":"Automated detection of glaucoma using deep learning convolution network (G-net)","volume":"79","author":"Juneja","year":"2020","journal-title":"Multimedia Tools and Applications"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b77","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1016\/j.bbe.2018.02.003","article-title":"Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images","volume":"38","author":"Kausu","year":"2018","journal-title":"Biocybernetics and Biomedical Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b78","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1186\/s12916-019-1426-2","article-title":"Key challenges for delivering clinical impact with artificial intelligence","volume":"17","author":"Kelly","year":"2019","journal-title":"BMC Medicine"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b79","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1186\/s41747-023-00336-x","article-title":"Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects","volume":"7","author":"Kondylakis","year":"2023","journal-title":"European Radiology Experimental"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b80","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1038\/s41597-022-01388-1","article-title":"PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment","volume":"9","author":"Kovalyk","year":"2022","journal-title":"Scientific Data"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b81","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0206081","article-title":"A deep learning approach to automatic detection of early glaucoma from visual fields","volume":"13","author":"Kucur","year":"2018","journal-title":"PLoS One"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b82","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1007\/s42452-022-04984-3","article-title":"Odgnet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images","volume":"4","author":"Latif","year":"2022","journal-title":"SN Applied Sciences"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b83","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1097\/IJG.0000000000001458","article-title":"Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier","volume":"29","author":"Lee","year":"2020","journal-title":"Journal of Glaucoma"},{"key":"10.1016\/j.eswa.2024.124888_b84","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.artmed.2019.02.006","article-title":"Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis","volume":"94","author":"Lee","year":"2019","journal-title":"Artificial Intelligence in Medicine"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b85","doi-asserted-by":"crossref","DOI":"10.1016\/j.xops.2023.100300","article-title":"Characteristics of a large, labeled data set for the training of artificial intelligence for glaucoma screening with fundus photographs","volume":"3","author":"Lemij","year":"2023","journal-title":"Ophthalmology Science"},{"issue":"8","key":"10.1016\/j.eswa.2024.124888_b86","doi-asserted-by":"crossref","first-page":"1199","DOI":"10.1016\/j.ophtha.2018.01.023","article-title":"Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs","volume":"125","author":"Li","year":"2018","journal-title":"Ophthalmology"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b87","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1038\/s41746-020-00329-9","article-title":"Development and clinical deployment of a smartphone-based visual field deep learning system for glaucoma detection","volume":"3","author":"Li","year":"2020","journal-title":"NPJ Digital Medicine"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b88","doi-asserted-by":"crossref","DOI":"10.1172\/JCI157968","article-title":"A deep-learning system predicts glaucoma incidence and progression using retinal photographs","volume":"132","author":"Li","year":"2022","journal-title":"The Journal of Clinical Investigation"},{"key":"10.1016\/j.eswa.2024.124888_b89","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.ins.2022.11.108","article-title":"Subspace-based minority oversampling for imbalance classification","volume":"621","author":"Li","year":"2023","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2024.124888_b90","series-title":"Medical image computing and computer assisted intervention \u2013 MICCAI 2020","first-page":"626","article-title":"DeepGF: Glaucoma forecast using the sequential fundus images","author":"Li","year":"2020"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b91","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1109\/TMI.2019.2927226","article-title":"A large-scale database and a CNN model for attention-based glaucoma detection","volume":"39","author":"Li","year":"2020","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2024.124888_b92","series-title":"2019 IEEE\/CVF conference on computer vision and pattern recognition","first-page":"10563","article-title":"Attention based glaucoma detection: A large-scale database and cnn model","author":"Li","year":"2019"},{"issue":"5","key":"10.1016\/j.eswa.2024.124888_b93","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1109\/JBHI.2019.2949075","article-title":"Clinical interpretable deep learning model for glaucoma diagnosis","volume":"24","author":"Liao","year":"2020","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b94","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2019.103485","article-title":"Joint optic disc and cup segmentation using semi-supervised conditional GANs","volume":"115","author":"Liu","year":"2019","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2024.124888_b95","series-title":"IEEE\/CVF international conference on computer vision","first-page":"9992","article-title":"Swin transformer: Hierarchical vision transformer using shifted windows","author":"Liu","year":"2021"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b96","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1109\/TMI.2003.823261","article-title":"Optic nerve head segmentation","volume":"23","author":"Lowell","year":"2004","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2024.124888_b97","series-title":"Proceedings of the 31st international conference on neural information processing systems","first-page":"4768","article-title":"A unified approach to interpreting model predictions","author":"Lundberg","year":"2017"},{"key":"10.1016\/j.eswa.2024.124888_b98","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.ijmedinf.2017.11.015","article-title":"An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection","volume":"110","author":"M.","year":"2018","journal-title":"International Journal of Medical Informatics"},{"issue":"7","key":"10.1016\/j.eswa.2024.124888_b99","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0219126","article-title":"A feature agnostic approach for glaucoma detection in OCT volumes","volume":"14","author":"Maetschke","year":"2019","journal-title":"PLoS One"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b100","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1109\/JBHI.2016.2544961","article-title":"Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images","volume":"21","author":"Maheshwari","year":"2017","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b101","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105341","article-title":"Offline computer-aided diagnosis for glaucoma detection using fundus images targeted at mobile devices","volume":"192","author":"Martins","year":"2020","journal-title":"Computer Methods and Programs in Biomedicine"},{"issue":"6","key":"10.1016\/j.eswa.2024.124888_b102","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1001\/jama.2019.21579","article-title":"Artificial intelligence in health care: A report from the national academy of medicine","volume":"323","author":"Matheny","year":"2020","journal-title":"JAMA"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b103","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41433-019-0577-x","article-title":"The impact of artificial intelligence in the diagnosis and management of glaucoma","volume":"34","author":"Mayro","year":"2020","journal-title":"Eye"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b104","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.ophtha.2018.12.033","article-title":"From machine to machine: An OCT-trained deep learning algorithm for objective quantification of glaucomatous damage in fundus photographs","volume":"126","author":"Medeiros","year":"2019","journal-title":"Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b105","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.ajo.2021.04.021","article-title":"Automated detection of glaucoma with interpretable machine learning using clinical data and multimodal retinal images","volume":"231","author":"Mehta","year":"2021","journal-title":"American Journal of Ophthalmology"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b106","doi-asserted-by":"crossref","DOI":"10.1167\/tvst.11.1.1","article-title":"UWHVF: A real-world, open source dataset of perimetry tests from the humphrey field analyzer at the university of washington","volume":"11","author":"Montesano","year":"2022","journal-title":"Translational Vision Science & Technology"},{"issue":"12","key":"10.1016\/j.eswa.2024.124888_b107","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1097\/IJG.0000000000000765","article-title":"Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects","volume":"26","author":"Muhammad","year":"2017","journal-title":"Journal of Glaucoma"},{"key":"10.1016\/j.eswa.2024.124888_b108","doi-asserted-by":"crossref","DOI":"10.1016\/j.compmedimag.2019.101643","article-title":"Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images","volume":"77","author":"Mvoulana","year":"2019","journal-title":"Computerized Medical Imaging and Graphics"},{"issue":"24","key":"10.1016\/j.eswa.2024.124888_b109","first-page":"5459","article-title":"Glaucoma detection from fundus image using opencv","volume":"4","author":"Narasimhan","year":"2012","journal-title":"Research Journal of Applied Sciences, Engineering and Technology"},{"key":"10.1016\/j.eswa.2024.124888_b110","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102559","article-title":"ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images","volume":"67","author":"Nayak","year":"2021","journal-title":"Biomedical Signal Processing and Control"},{"key":"10.1016\/j.eswa.2024.124888_b111","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.ajo.2021.01.023","article-title":"Prediction of visual field progression from OCT structural measures in moderate to advanced glaucoma","volume":"226","author":"Nouri-Mahdavi","year":"2021","journal-title":"American Journal of Ophthalmology"},{"issue":"5","key":"10.1016\/j.eswa.2024.124888_b112","doi-asserted-by":"crossref","DOI":"10.1167\/tvst.11.5.11","article-title":"Deep learning for glaucoma detection and identification of novel diagnostic areas in diverse real-world datasets","volume":"11","author":"Noury","year":"2022","journal-title":"Translational Vision Science & Technology"},{"year":"2024","series-title":"Ocular disease intelligent recognition","key":"10.1016\/j.eswa.2024.124888_b113"},{"key":"10.1016\/j.eswa.2024.124888_b114","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101570","article-title":"REFUGE challenge: A unified framework for evaluating automated methods for glaucoma assessment from fundus photographs","volume":"59","author":"Orlando","year":"2020","journal-title":"Medical Image Analysis"},{"issue":"8","key":"10.1016\/j.eswa.2024.124888_b115","doi-asserted-by":"crossref","first-page":"1933","DOI":"10.1161\/ATVBAHA.111.225219","article-title":"Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the child heart and health study in England (CHASE)","volume":"31","author":"Owen","year":"2011","journal-title":"Arteriosclerosis, Thrombosis, and Vascular Biology"},{"key":"10.1016\/j.eswa.2024.124888_b116","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107512","article-title":"An automatic recognition of glaucoma in fundus images using deep learning and random forest classifier","volume":"109","author":"P.","year":"2021","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2024.124888_b117","series-title":"2018 25th IEEE international conference on image processing","first-page":"2775","article-title":"G-eyenet: A convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images","author":"Pal","year":"2018"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b118","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-022-16262-8","article-title":"Multi-task deep learning for glaucoma detection from color fundus images","volume":"12","author":"Pascal","year":"2022","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2024.124888_b119","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102244","article-title":"Automated segmentation and classifcation of retinal features for glaucoma diagnosis","volume":"63","author":"Pathan","year":"2021","journal-title":"Biomedical Signal Processing and Control"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b120","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1136\/bjo.2005.081224","article-title":"The number of people with glaucoma worldwide in 2010 and 2020","volume":"90","author":"Quigley","year":"2006","journal-title":"British Journal of Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b121","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.ins.2018.01.051","article-title":"Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images","volume":"441","author":"Raghavendra","year":"2018","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2024.124888_b122","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-019-1427-x","article-title":"A two layer sparse autoencoder for glaucoma identification with fundus images","volume":"43","author":"Raghavendra","year":"2019","journal-title":"Journal of Medical Systems"},{"key":"10.1016\/j.eswa.2024.124888_b123","doi-asserted-by":"crossref","first-page":"641","DOI":"10.1016\/j.future.2017.02.014","article-title":"Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach","volume":"78","author":"Rahmani","year":"2018","journal-title":"Future Generation Computer Systems"},{"key":"10.1016\/j.eswa.2024.124888_b124","doi-asserted-by":"crossref","DOI":"10.1016\/j.dib.2020.105342","article-title":"Data on OCT and fundus images for the detection of glaucoma","volume":"29","author":"Raja","year":"2020","journal-title":"Data in Brief"},{"issue":"7","key":"10.1016\/j.eswa.2024.124888_b125","doi-asserted-by":"crossref","first-page":"2140","DOI":"10.1109\/TBME.2020.3030085","article-title":"Clinically verified hybrid deep learning system for retinal ganglion cells aware grading of glaucomatous progression","volume":"68","author":"Raja","year":"2021","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b126","doi-asserted-by":"crossref","first-page":"e172","DOI":"10.1016\/S2589-7500(19)30085-8","article-title":"Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis","volume":"1","author":"Ran","year":"2019","journal-title":"The Lancet Digital Health"},{"key":"10.1016\/j.eswa.2024.124888_b127","doi-asserted-by":"crossref","first-page":"7497","DOI":"10.1109\/TIP.2020.3003735","article-title":"Task decomposition and synchronization for semantic biomedical image segmentation","volume":"29","author":"Ren","year":"2020","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2024.124888_b128","series-title":"Advances in neural information processing systems","first-page":"1","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"Vol. 28","author":"Ren","year":"2015"},{"key":"10.1016\/j.eswa.2024.124888_b129","series-title":"Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"1135","article-title":"Why should I trust you?: Explaining the predictions of any classifier","author":"Ribeiro","year":"2016"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b130","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"ImageNet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.eswa.2024.124888_b131","series-title":"2018 IEEE\/CVF conference on computer vision and pattern recognition","first-page":"4510","article-title":"MobileNetV2: Inverted residuals and linear bottlenecks","author":"Sandler","year":"2018"},{"key":"10.1016\/j.eswa.2024.124888_b132","series-title":"2017 IEEE international conference on computer vision","first-page":"618","article-title":"Grad-CAM: Visual explanations from deep networks via gradient-based localization","author":"Selvaraju","year":"2017"},{"year":"2021","series-title":"Biosignal and Medical Image Processing","author":"Semmlow","key":"10.1016\/j.eswa.2024.124888_b133"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b134","doi-asserted-by":"crossref","first-page":"14665","DOI":"10.1038\/s41598-018-33013-w","article-title":"Development of a deep residual learning algorithm to screen for glaucoma from fundus photography","volume":"8","author":"Shibata","year":"2018","journal-title":"Scientific Reports"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b135","doi-asserted-by":"crossref","first-page":"60: 1","DOI":"10.1186\/s40537-019-0197-0","article-title":"A survey on image data augmentation for deep learning","volume":"6","author":"Shorten","year":"2019","journal-title":"Journal of Big Data"},{"key":"10.1016\/j.eswa.2024.124888_b136","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s11517-020-02307-5","article-title":"An enhanced deep image model for glaucoma diagnosis using feature-based detection in retinal fundus","volume":"59","author":"Singh","year":"2021","journal-title":"Medical & Biological Engineering & Computing"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b137","first-page":"1004","article-title":"A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis","volume":"2","author":"Sivaswamy","year":"2015","journal-title":"JSM Biomedical Imaging Data Papers"},{"key":"10.1016\/j.eswa.2024.124888_b138","series-title":"2014 IEEE 11th international symposium on biomedical imaging","first-page":"53","article-title":"Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation","author":"Sivaswamy","year":"2014"},{"issue":"5","key":"10.1016\/j.eswa.2024.124888_b139","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1364\/OPTICA.418274","article-title":"Weakly supervised individual ganglion cell segmentation from adaptiveoptics OCT images for glaucomatous damage assessment","volume":"8","author":"Soltanian-Zadeh","year":"2021","journal-title":"Optica"},{"issue":"9","key":"10.1016\/j.eswa.2024.124888_b140","doi-asserted-by":"crossref","first-page":"2392","DOI":"10.1109\/TMI.2021.3077484","article-title":"Deep relation transformer for diagnosing glaucoma with optical coherence tomography and visual field function","volume":"40","author":"Song","year":"2021","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b141","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1109\/TMI.2004.825627","article-title":"Ridge-based vessel segmentation in color images of the retina","volume":"23","author":"Staal","year":"2004","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b142","doi-asserted-by":"crossref","first-page":"e144","DOI":"10.1016\/S2214-109X(20)30489-7","article-title":"Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study","volume":"9","author":"Steinmetz","year":"2021","journal-title":"The Lancet Global Health"},{"key":"10.1016\/j.eswa.2024.124888_b143","series-title":"proceedings of the 34th international conference on machine learning","first-page":"3319","article-title":"Axiomatic attribution for deep networks","author":"Sundararajan","year":"2017"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b144","doi-asserted-by":"crossref","first-page":"14","DOI":"10.4103\/2153-3539.109881","article-title":"Automated classification of immunostaining patterns in breast tissue from the human protein atlas","volume":"4","author":"Swamidoss","year":"2013","journal-title":"Journal of Pathology Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b145","series-title":"2016 IEEE conference on computer vision and pattern recognition","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","author":"Szegedy","year":"2016"},{"key":"10.1016\/j.eswa.2024.124888_b146","doi-asserted-by":"crossref","first-page":"102733","DOI":"10.1109\/ACCESS.2020.2998635","article-title":"CDED-net: Joint segmentation of optic disc and optic cup for glaucoma screening","volume":"8","author":"Tabassum","year":"2020","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.eswa.2024.124888_b147","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1109\/TSMC.1978.4309999","article-title":"Textural features corresponding to visual perception","volume":"8","author":"Tamura","year":"1978","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics"},{"key":"10.1016\/j.eswa.2024.124888_b148","series-title":"Proceedings of the 36th international conference on machine learning","first-page":"6105","article-title":"EfficientNet: Rethinking model scaling for convolutional neural networks","volume":"Vol. 97","author":"Tan","year":"2019"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b149","doi-asserted-by":"crossref","first-page":"2245","DOI":"10.1109\/TPAMI.2011.69","article-title":"Robust multiscale stereo matching from fundus images with radiometric differences","volume":"33","author":"Tang","year":"2011","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2024.124888_b150","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115975","article-title":"Optimizing the early glaucoma detection from visual fields by combining preprocessing techniques and ensemble classifier with selection strategies","volume":"189","author":"T\u00e9kouabou","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124888_b151","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/j.ins.2019.11.004","article-title":"Data imbalance in classification: Experimental evaluation","volume":"513","author":"Thabtah","year":"2020","journal-title":"Information Sciences"},{"issue":"8","key":"10.1016\/j.eswa.2024.124888_b152","doi-asserted-by":"crossref","first-page":"2456","DOI":"10.1109\/TBME.2020.3043215","article-title":"Robust and interpretable convolutional neural networks to detect glaucoma in optical coherence tomography images","volume":"68","author":"Thakoor","year":"2021","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2024.124888_b153","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2020.2982150","article-title":"Convex representations using deep archetypal analysis for predicting glaucoma","volume":"8","author":"Thakur","year":"2020","journal-title":"IEEE Journal of Translational Engineering in Health and Medicine"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b154","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.ogla.2020.04.012","article-title":"Predicting glaucoma before onset using deep learning","volume":"3","author":"Thakur","year":"2020","journal-title":"Ophthalmology Glaucoma"},{"key":"10.1016\/j.eswa.2024.124888_b155","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102137","article-title":"Classification of glaucoma using hybrid features with machine learning approaches","volume":"62","author":"Thakur","year":"2020","journal-title":"Biomedical Signal Processing and Control"},{"issue":"11","key":"10.1016\/j.eswa.2024.124888_b156","doi-asserted-by":"crossref","first-page":"2081","DOI":"10.1016\/j.ophtha.2014.05.013","article-title":"Global prevalence of glaucoma and projections of glaucoma burden through 2040","volume":"121","author":"Tham","year":"2014","journal-title":"Ophthalmology"},{"issue":"2","key":"10.1016\/j.eswa.2024.124888_b157","doi-asserted-by":"crossref","DOI":"10.1167\/tvst.12.2.23","article-title":"Medical application of geometric deep learning for the diagnosis of glaucoma","volume":"12","author":"Thi\u00e9ry","year":"2023","journal-title":"Translational Vision Science & Technology"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b158","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1001\/jamaophthalmol.2019.5983","article-title":"Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans","volume":"138","author":"Thompson","year":"2020","journal-title":"JAMA Ophthalmology"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b159","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1001\/jama.1991.03470030069026","article-title":"Racial variations in the prevalence of primary open-angle glaucoma: The baltimore eye survey","volume":"266","author":"Tielsch","year":"1991","journal-title":"Journal of American Medical Association"},{"key":"10.1016\/j.eswa.2024.124888_b160","doi-asserted-by":"crossref","DOI":"10.1016\/j.preteyeres.2019.04.003","article-title":"Deep learning in ophthalmology: The technical and clinical considerations","volume":"72","author":"Ting","year":"2019","journal-title":"Progress in Retinal and Eye Research"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b161","doi-asserted-by":"crossref","first-page":"5314","DOI":"10.1109\/TPAMI.2022.3206148","article-title":"ResMLP: Feedforward networks for image classification with data-efficient training","volume":"45","author":"Touvron","year":"2023","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2024.124888_b162","series-title":"Proceedings of the 38th international conference on machine learning","first-page":"139","article-title":"Training data-efficient image transformers & distillation through attention","author":"Touvron","year":"2021"},{"key":"10.1016\/j.eswa.2024.124888_b163","series-title":"2021 IEEE\/CVF international conference on computer vision","first-page":"32","article-title":"Going deeper with image transformers","author":"Touvron","year":"2021"},{"key":"10.1016\/j.eswa.2024.124888_b164","series-title":"IEEE winter conference on applications of computer vision","first-page":"2949","article-title":"Iterative and adaptive sampling with spatial attention for black-box model explanations","author":"Vasu","year":"2020"},{"key":"10.1016\/j.eswa.2024.124888_b165","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.eswa.2018.06.010","article-title":"Convolutional neural network and texture descriptor-based automatic detection and diagnosis of glaucoma","volume":"110","author":"Vin\u00edcius dos Santos Ferreira","year":"2018","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124888_b166","doi-asserted-by":"crossref","first-page":"l6927","DOI":"10.1136\/bmj.l6927","article-title":"Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness","volume":"368","author":"Vollmer","year":"2020","journal-title":"BMJ"},{"key":"10.1016\/j.eswa.2024.124888_b167","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101695","article-title":"Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning","volume":"63","author":"Wang","year":"2020","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2024.124888_b168","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107810","article-title":"Automated segmentation of the optic disc from fundus images using an asymmetric deep learning network","volume":"112","author":"Wang","year":"2021","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2024.124888_b169","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.bspc.2019.01.022","article-title":"A coarse-to-fine deep learning framework for optic disc segmentation in fundus images","volume":"51","author":"Wang","year":"2019","journal-title":"Biomedical Signal Processing and Control"},{"issue":"5","key":"10.1016\/j.eswa.2024.124888_b170","doi-asserted-by":"crossref","DOI":"10.1145\/3326362","article-title":"Dynamic graph CNN for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"ACM Transactions on Graphics"},{"issue":"3","key":"10.1016\/j.eswa.2024.124888_b171","first-page":"63: 1","article-title":"Generalizing from a few examples: A survey on few-shot learning","volume":"53","author":"Wang","year":"2020","journal-title":"ACM Computing Surveys (CSUR)"},{"key":"10.1016\/j.eswa.2024.124888_b172","series-title":"2022 26th international conference on pattern recognition","first-page":"5082","article-title":"Vision transformers based classification for glaucomatous eye condition","author":"Wassel","year":"2022"},{"key":"10.1016\/j.eswa.2024.124888_b173","series-title":"High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics","first-page":"107","article-title":"Ophthalmic diagnostic imaging: glaucoma","author":"Weinreb","year":"2019"},{"key":"10.1016\/j.eswa.2024.124888_b174","series-title":"Medical image computing and computer assisted intervention \u2013 MICCAI 2020","first-page":"731","article-title":"Leveraging undiagnosed data for glaucoma classification with teacher-student learning","author":"Wu","year":"2020"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b175","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12938-021-00877-5","article-title":"Automatic glaucoma detection based on transfer induced attention network","volume":"20","author":"Xu","year":"2021","journal-title":"BioMedical Engineering OnLine"},{"issue":"1","key":"10.1016\/j.eswa.2024.124888_b176","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1038\/s41746-021-00417-4","article-title":"A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis","volume":"4","author":"Xu","year":"2021","journal-title":"NPJ Digital Medicine"},{"key":"10.1016\/j.eswa.2024.124888_b177","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2022.104233","article-title":"A multi-feature deep learning system to enhance glaucoma severity diagnosis with high accuracy and fast speed","volume":"136","author":"Xue","year":"2022","journal-title":"Journal of Biomedical Informatics"},{"issue":"40","key":"10.1016\/j.eswa.2024.124888_b178","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.2307\/4586294","article-title":"Statistical problems in assessing methods of medical diagnosis, with special reference to X-Ray techniques","volume":"62","author":"Yerushalmy","year":"1947","journal-title":"Public Health Reports (1896-1970)"},{"key":"10.1016\/j.eswa.2024.124888_b179","doi-asserted-by":"crossref","first-page":"41180","DOI":"10.1109\/ACCESS.2024.3376441","article-title":"A comprehensive survey of convolutions in deep learning: Applications, challenges, and future trends","volume":"12","author":"Younesi","year":"2024","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2024.124888_b180","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.ajo.2018.06.007","article-title":"Detection of longitudinal visual field progression in glaucoma using machine learning","volume":"193","author":"Yousefi","year":"2018","journal-title":"American Journal of Ophthalmology"},{"issue":"12","key":"10.1016\/j.eswa.2024.124888_b181","doi-asserted-by":"crossref","first-page":"1402","DOI":"10.1016\/j.ophtha.2022.07.001","article-title":"Machine-identified patterns of visual field loss and an association with rapid progression in the ocular hypertension treatment study","volume":"129","author":"Yousefi","year":"2022","journal-title":"Ophthalmology"},{"key":"10.1016\/j.eswa.2024.124888_b182","series-title":"Medical image computing and computer assisted intervention \u2013 MICCAI 2020","first-page":"741","article-title":"Difficulty-aware glaucoma classification with multi-rater consensus modeling","author":"Yu","year":"2020"},{"key":"10.1016\/j.eswa.2024.124888_b183","series-title":"Computer vision \u2013 ECCV 2014","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"issue":"9","key":"10.1016\/j.eswa.2024.124888_b184","doi-asserted-by":"crossref","first-page":"4635","DOI":"10.1109\/JBHI.2022.3185956","article-title":"SplitAVG: A heterogeneity-aware federated deep learning method for medical imaging","volume":"26","author":"Zhang","year":"2022","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b185","series-title":"Annual international conference of the IEEE engineering in medicine and biology","first-page":"3065","article-title":"ORIGA-light: An online retinal fundus image database for glaucoma analysis and research","author":"Zhang","year":"2010"},{"key":"10.1016\/j.eswa.2024.124888_b186","series-title":"Computer vision\u2013ECCV 2020","first-page":"190","article-title":"EGDCL: An adaptive curriculum learning framework for unbiased glaucoma diagnosis","author":"Zhao","year":"2020"},{"key":"10.1016\/j.eswa.2024.124888_b187","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102295","article-title":"Diagnosing glaucoma on imbalanced data with self-ensemble dual-curriculum learning","volume":"75","author":"Zhao","year":"2022","journal-title":"Medical Image Analysis"},{"issue":"4","key":"10.1016\/j.eswa.2024.124888_b188","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.1109\/JBHI.2019.2934477","article-title":"Direct cup-to-disc ratio estimation for glaucoma screening via semi-supervised learning","volume":"24","author":"Zhao","year":"2020","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124888_b189","series-title":"Proceedings of the AAAI conference on artificial intelligence","first-page":"809","article-title":"Weakly-supervised simultaneous evidence identification and segmentation for automated glaucoma diagnosis","volume":"Vol. 33","author":"Zhao","year":"2019"},{"key":"10.1016\/j.eswa.2024.124888_b190","doi-asserted-by":"crossref","first-page":"2055","DOI":"10.1007\/s11517-019-02011-z","article-title":"Adaptive weighted locality-constrained sparse coding for glaucoma diagnosis","volume":"57","author":"Zhou","year":"2019","journal-title":"Medical & Biological Engineering & Computing"},{"key":"10.1016\/j.eswa.2024.124888_b191","series-title":"2017 IEEE international conference on computer vision","first-page":"2242","article-title":"Unpaired image-to-image translation using cycle-consistent adversarial networks","author":"Zhu","year":"2017"},{"key":"10.1016\/j.eswa.2024.124888_b192","series-title":"2018 IEEE\/CVF conference on computer vision and pattern recognition","first-page":"8697","article-title":"Learning transferable architectures for scalable image recognition","author":"Zoph","year":"2018"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742401755X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742401755X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,9]],"date-time":"2024-10-09T21:12:44Z","timestamp":1728508364000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741742401755X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":192,"alternative-id":["S095741742401755X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124888","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Glaucoma diagnosis in the era of deep learning: A survey","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124888","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"124888"}}