{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:12:50Z","timestamp":1732043570246},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T00:00:00Z","timestamp":1721606400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["72071116"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007928","name":"Ningbo Science and Technology Bureau","doi-asserted-by":"publisher","award":["2023Z138","2022Z173","2023Z237","2022Z217"],"id":[{"id":"10.13039\/501100007928","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.eswa.2024.124824","type":"journal-article","created":{"date-parts":[[2024,7,17]],"date-time":"2024-07-17T23:56:30Z","timestamp":1721260590000},"page":"124824","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"PD","title":["Progressively-orthogonally-mapped EfficientNet for action recognition on time-range-Doppler signature"],"prefix":"10.1016","volume":"255","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3056-8265","authenticated-orcid":false,"given":"Chenglin","family":"Yao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4619-6590","authenticated-orcid":false,"given":"Jianfeng","family":"Ren","sequence":"additional","affiliation":[]},{"given":"Ruibin","family":"Bai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6300-3503","authenticated-orcid":false,"given":"Heshan","family":"Du","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6281-6505","authenticated-orcid":false,"given":"Jiang","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9104-2315","authenticated-orcid":false,"given":"Xudong","family":"Jiang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.eswa.2024.124824_b1","doi-asserted-by":"crossref","first-page":"8648","DOI":"10.1109\/JSEN.2022.3156762","article-title":"Activity classification based on feature fusion of FMCW radar human motion micro-Doppler signatures","volume":"22","author":"Abdu","year":"2022","journal-title":"IEEE Sensors Journal"},{"issue":"2\u2013381","key":"10.1016\/j.eswa.2024.124824_b2","article-title":"Temporal convolutional neural networks for radar micro-Doppler based gait recognition","volume":"21","author":"Addabbo","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2024.124824_b3","doi-asserted-by":"crossref","unstructured":"Ahuja, K., Jiang, Y., Goel, M., & Harrison, C. (2021). Vid2Doppler: synthesizing Doppler radar data from videos for training privacy-preserving activity recognition. Vol. 292, In CHI conference on human factors in computing systems (pp. 1\u201310).","DOI":"10.1145\/3411764.3445138"},{"key":"10.1016\/j.eswa.2024.124824_b4","series-title":"International conference on machine learning","first-page":"813","article-title":"Is space-time attention all you need for video understanding?","author":"Bertasius","year":"2021"},{"issue":"9","key":"10.1016\/j.eswa.2024.124824_b5","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1049\/iet-rsn.2015.0084","article-title":"Features for micro-Doppler based activity classification","volume":"9","author":"Bj\u00f6rklund","year":"2015","journal-title":"IET Radar, Sonar & Navigation"},{"issue":"7","key":"10.1016\/j.eswa.2024.124824_b6","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1049\/iet-rsn.2017.0511","article-title":"Radar-ID: human identification based on radar micro-Doppler signatures using deep convolutional neural networks","volume":"12","author":"Cao","year":"2018","journal-title":"IET Radar, Sonar & Navigation"},{"issue":"7","key":"10.1016\/j.eswa.2024.124824_b7","doi-asserted-by":"crossref","first-page":"6851","DOI":"10.1109\/JSEN.2022.3151943","article-title":"DIAT-\u03bc RadHAR (micro-Doppler signature dataset) & \u03bc RadNet (A lightweight DCNN)\u2014For human suspicious activity recognition","volume":"22","author":"Chakraborty","year":"2022","journal-title":"IEEE Sensors Journal"},{"year":"2022","series-title":"MIMOGR:MIMO millimeter wave radar multi-feature dataset for gesture recognition","author":"Chen","key":"10.1016\/j.eswa.2024.124824_b8"},{"key":"10.1016\/j.eswa.2024.124824_b9","doi-asserted-by":"crossref","unstructured":"Chen, S., He, W., Ren, J., & Jiang, X. (2022). Attention-Based Dual-Stream Vision Transformer for Radar Gait Recognition. In IEEE international conference on acoustics, speech and signal processing ICASSP, (pp. 3668\u20133672).","DOI":"10.1109\/ICASSP43922.2022.9746565"},{"issue":"5","key":"10.1016\/j.eswa.2024.124824_b10","doi-asserted-by":"crossref","first-page":"2889","DOI":"10.1109\/TAES.2021.3068436","article-title":"Radar-based human activity recognition using hybrid neural network model with multidomain fusion","volume":"57","author":"Ding","year":"2021","journal-title":"IEEE Transactions on Aerospace and Electronic Systems"},{"issue":"9","key":"10.1016\/j.eswa.2024.124824_b11","doi-asserted-by":"crossref","first-page":"6821","DOI":"10.1109\/TGRS.2019.2908758","article-title":"Continuous human motion recognition with a dynamic range-Doppler trajectory method based on FMCW radar","volume":"57","author":"Ding","year":"2019","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"11","key":"10.1016\/j.eswa.2024.124824_b12","doi-asserted-by":"crossref","first-page":"5029","DOI":"10.1109\/TMTT.2022.3200097","article-title":"Human motion recognition with spatial-temporal-convLSTM network using dynamic range-Doppler frames based on portable FMCW radar","volume":"70","author":"Ding","year":"2022","journal-title":"IEEE Transactions on Microwave Theory and Techniques"},{"key":"10.1016\/j.eswa.2024.124824_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eswa.2018.02.019","article-title":"Micro-Doppler radar classification of humans and animals in an operational environment","volume":"102","author":"van Eeden","year":"2018","journal-title":"Expert Systems with Applications"},{"issue":"6","key":"10.1016\/j.eswa.2024.124824_b14","doi-asserted-by":"crossref","first-page":"3617","DOI":"10.1109\/TAES.2019.2910980","article-title":"Radar data cube processing for human activity recognition using multisubspace learning","volume":"55","author":"Erol","year":"2019","journal-title":"IEEE Transactions on Aerospace and Electronic Systems"},{"issue":"19","key":"10.1016\/j.eswa.2024.124824_b15","doi-asserted-by":"crossref","first-page":"1022","DOI":"10.1049\/el.2019.2378","article-title":"Radar sensing for healthcare","volume":"55","author":"Fioranelli","year":"2019","journal-title":"Electronics Letters"},{"issue":"105996","key":"10.1016\/j.eswa.2024.124824_b16","article-title":"Millimeter wave radar data of people walking","volume":"31","author":"Gambi","year":"2020","journal-title":"Data in Brief"},{"key":"10.1016\/j.eswa.2024.124824_b17","doi-asserted-by":"crossref","first-page":"125623","DOI":"10.1109\/ACCESS.2019.2938725","article-title":"Short-range radar-based gesture recognition system using 3D CNN with triplet loss","volume":"7","author":"Hazra","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2024.124824_b18","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition CVPR, (pp. 770\u2013778).","DOI":"10.1109\/CVPR.2016.90"},{"issue":"8","key":"10.1016\/j.eswa.2024.124824_b19","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.1109\/TPAMI.2019.2913372","article-title":"Squeeze-and-excitation networks","volume":"42","author":"Hu","year":"2020","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2024.124824_b20","doi-asserted-by":"crossref","unstructured":"Jaswal, G., Srirangarajan, S., & Roy, S. D. (2021). Range-Doppler hand gesture recognition using deep residual-3DCNN with transformer network. In Pattern recognition. ICPR international workshops and challenges (pp. 759\u2013772).","DOI":"10.1007\/978-3-030-68780-9_57"},{"issue":"1","key":"10.1016\/j.eswa.2024.124824_b21","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1109\/TAES.2017.2740098","article-title":"Fall detection using deep learning in range-Doppler radars","volume":"54","author":"Jokanovi\u0107","year":"2017","journal-title":"IEEE Transactions on Aerospace and Electronic Systems"},{"key":"10.1016\/j.eswa.2024.124824_b22","series-title":"Radar sensor technology XXI","first-page":"324","article-title":"Classification of micro-Doppler signatures of human aquatic activity through simulation and measurement using transferred learning","volume":"Vol. 10188","author":"Kim","year":"2017"},{"key":"10.1016\/j.eswa.2024.124824_b23","first-page":"1","article-title":"Radar-based human activity recognition combining range\u2013time\u2013Doppler maps and range-distributed-convolutional neural networks","volume":"60","author":"Kim","year":"2022","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"3","key":"10.1016\/j.eswa.2024.124824_b24","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1109\/LGRS.2018.2873776","article-title":"Unsupervised domain adaptation for micro-Doppler human motion classification via feature fusion","volume":"16","author":"Lang","year":"2018","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.eswa.2024.124824_b25","first-page":"1","article-title":"Radar-based noninvasive person authentication using micro-Doppler signatures and generative adversarial network","volume":"72","author":"Lang","year":"2023","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"issue":"120096","key":"10.1016\/j.eswa.2024.124824_b26","article-title":"Verification and performance comparison of CNN-based algorithms for two-step helmet-wearing detection","volume":"225","author":"Lee","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124824_b27","series-title":"IET international radar conference","first-page":"1373","article-title":"Radar-based hierarchical human activity classification","volume":"Vol. 2020","author":"Li","year":"2020"},{"issue":"9","key":"10.1016\/j.eswa.2024.124824_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/rs11091068","article-title":"A survey of deep learning-based human activity recognition in radar","volume":"11","author":"Li","year":"2019","journal-title":"Remote Sensing"},{"issue":"1","key":"10.1016\/j.eswa.2024.124824_b29","doi-asserted-by":"crossref","first-page":"3473","DOI":"10.1038\/s41598-023-30631-x","article-title":"Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms","volume":"13","author":"Li","year":"2023","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2024.124824_b30","doi-asserted-by":"crossref","unstructured":"Liao, X., He, L., Yang, Z., & Zhang, C. (2018). Video-based person re-identification via 3D convolutional networks and non-local attention. In Asian conference on computer vision ACCV, (pp. 620\u2013634).","DOI":"10.1007\/978-3-030-20876-9_39"},{"issue":"117588","key":"10.1016\/j.eswa.2024.124824_b31","article-title":"Cross-document attention-based gated fusion network for automated medical licensing exam","volume":"205","author":"Liu","year":"2022","journal-title":"Expert Systems with Applications"},{"issue":"113994","key":"10.1016\/j.eswa.2024.124824_b32","article-title":"Recognizing activities of daily living from UWB radars and deep learning","volume":"164","author":"Maitre","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"10.1016\/j.eswa.2024.124824_b33","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.3390\/s21041078","article-title":"3D convolutional neural networks initialized from pretrained 2D convolutional neural networks for classification of industrial parts","volume":"21","author":"Merino","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2024.124824_b34","doi-asserted-by":"crossref","unstructured":"Molchanov, P., Gupta, S., Kim, K., & Pulli, K. (2015). Multi-sensor system for driver\u2019s hand-gesture recognition. Vol. 1, In IEEE international conference and workshops on automatic face and gesture recognition FG, (pp. 1\u20138).","DOI":"10.1109\/FG.2015.7163132"},{"key":"10.1016\/j.eswa.2024.124824_b35","doi-asserted-by":"crossref","unstructured":"Nocera, A., Senigagliesi, L., Ciattaglia, G., & Gambi, E. (2023). Walking Pattern Identification of FMCW Radar Data based on a Combined CNN and bi-LSTM Approach. In IEEE international symposium on computer-based medical systems CBMS, (pp. 275\u2013280).","DOI":"10.1109\/CBMS58004.2023.00230"},{"issue":"115563","key":"10.1016\/j.eswa.2024.124824_b36","article-title":"A Gaussian process model for UAV localization using millimetre wave radar","volume":"185","author":"Paredes","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124824_b37","unstructured":"Ramachandran, P., Zoph, B., & Le, Q. V. (2018). Searching for Activation Functions. In International conference on learning representations workshop. ICLRW."},{"key":"10.1016\/j.eswa.2024.124824_b38","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.patcog.2017.04.024","article-title":"Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection","volume":"69","author":"Ren","year":"2017","journal-title":"Pattern Recognition"},{"issue":"107709","key":"10.1016\/j.eswa.2024.124824_b39","article-title":"A three-step classification framework to handle complex data distribution for radar UAV detection","volume":"111","author":"Ren","year":"2021","journal-title":"Pattern Recognition"},{"issue":"18\u20132237","key":"10.1016\/j.eswa.2024.124824_b40","article-title":"Discrete human activity recognition and fall detection by combining FMCW RADAR data of heterogeneous environments for independent assistive living","volume":"10","author":"Saeed","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.eswa.2024.124824_b41","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In IEEE conference on computer vision and pattern recognition CVPR, (pp. 4510\u20134520).","DOI":"10.1109\/CVPR.2018.00474"},{"issue":"9","key":"10.1016\/j.eswa.2024.124824_b42","doi-asserted-by":"crossref","first-page":"2629","DOI":"10.1109\/TBME.2019.2893528","article-title":"Toward unobtrusive in-home gait analysis based on radar micro-Doppler signatures","volume":"66","author":"Seifert","year":"2019","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"4","key":"10.1016\/j.eswa.2024.124824_b43","doi-asserted-by":"crossref","DOI":"10.3390\/electronics9040588","article-title":"People walking classification using automotive radar","volume":"9","author":"Senigagliesi","year":"2020","journal-title":"Electronics"},{"key":"10.1016\/j.eswa.2024.124824_b44","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.eswa.2019.06.048","article-title":"Pedestrian recognition using micro Doppler effects of radar signals based on machine learning and multi-objective optimization","volume":"136","author":"Severino","year":"2019","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124824_b45","doi-asserted-by":"crossref","unstructured":"Shao, Y., Guo, S., Sun, L., & Chen, W. (2017). Human motion classification based on range information with deep convolutional neural network. In IEEE international conference on information science and control engineering ICISCE, (pp. 1519\u20131523).","DOI":"10.1109\/ICISCE.2017.317"},{"key":"10.1016\/j.eswa.2024.124824_b46","unstructured":"Tan, M., & Le, Q. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning ICML, (pp. 6105\u20136114)."},{"issue":"11\u20133881","key":"10.1016\/j.eswa.2024.124824_b47","article-title":"Radar sensing for activity classification in elderly people exploiting micro-Doppler signatures using machine learning","volume":"21","author":"Taylor","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2024.124824_b48","first-page":"24261","article-title":"MLP-Mixer: An all-MLP architecture for vision","volume":"34","author":"Tolstikhin","year":"2021","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2024.124824_b49","doi-asserted-by":"crossref","unstructured":"Wang, C., Wang, Z., Yu, Y., & Miao, X. (2019). Rapid Recognition of Human Behavior Based on Micro-Doppler Feature. In IEEE international conference on control, automation and information sciences ICCAIS, (pp. 1\u20135).","DOI":"10.1109\/ICCAIS46528.2019.9074550"},{"key":"10.1016\/j.eswa.2024.124824_b50","doi-asserted-by":"crossref","unstructured":"Wang, Z., Yao, C., Ren, J., Feng, M., & Jiang, X. (2022). Human Activity Recognition Using 3D Orthogonally-projected EfficientNet on Radar Time-Range-Doppler Signature. In IEEE international conference on software engineering and artificial intelligence SEAI, (pp. 26\u201330).","DOI":"10.1109\/SEAI55746.2022.9832301"},{"issue":"119042","key":"10.1016\/j.eswa.2024.124824_b51","article-title":"mmGesture: Semi-supervised gesture recognition system using mmWave radar","volume":"213","author":"Yan","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124824_b52","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.patcog.2018.07.030","article-title":"Open-set human activity recognition based on micro-Doppler signatures","volume":"85","author":"Yang","year":"2019","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2024.124824_b53","doi-asserted-by":"crossref","unstructured":"Yao, C., Wang, S., Zhang, J., He, W., Du, H., Ren, J., et al. (2021). rPPG-Based Spoofing Detection for Face Mask Attack using EfficientNet on Weighted Spatial-Temporal Representation. In IEEE international conference on image processing ICIP, (pp. 3872\u20133876).","DOI":"10.1109\/ICIP42928.2021.9506276"},{"issue":"20","key":"10.1016\/j.eswa.2024.124824_b54","doi-asserted-by":"crossref","first-page":"23224","DOI":"10.1109\/JSEN.2021.3107943","article-title":"User-definable dynamic hand gesture recognition based on Doppler radar and few-shot learning","volume":"21","author":"Zeng","year":"2021","journal-title":"IEEE Sensors Journal"},{"issue":"8","key":"10.1016\/j.eswa.2024.124824_b55","doi-asserted-by":"crossref","first-page":"3278","DOI":"10.1109\/JSEN.2018.2808688","article-title":"Latern: Dynamic continuous hand gesture recognition using FMCW radar sensor","volume":"18","author":"Zhang","year":"2018","journal-title":"IEEE Sensors Journal"},{"issue":"6","key":"10.1016\/j.eswa.2024.124824_b56","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1109\/TPAMI.2007.1110","article-title":"Dynamic texture recognition using local binary patterns with an application to facial expressions","volume":"29","author":"Zhao","year":"2007","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)"},{"key":"10.1016\/j.eswa.2024.124824_b57","doi-asserted-by":"crossref","unstructured":"Zhou, B., Lu, J., Xie, X., & Zhou, H. (2021). Human Identification Based on mmWave Radar Using Deep Convolutional Neural Network. In International symposium on smart and healthy cities ISHC, (pp. 90\u201394).","DOI":"10.1109\/ISHC54333.2021.00025"},{"key":"10.1016\/j.eswa.2024.124824_b58","doi-asserted-by":"crossref","first-page":"24713","DOI":"10.1109\/ACCESS.2020.2971064","article-title":"A hybrid CNN\u2013LSTM network for the classification of human activities based on Micro-Doppler radar","volume":"8","author":"Zhu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2024.124824_b59","unstructured":"Zintgraf, L. M., Cohen, T. S., Adel, T., & Welling, M. (2017). Visualizing Deep Neural Network Decisions: Prediction Difference Analysis. In International conference on learning representations ICLR, (pp. 1\u201312)."}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424016919?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424016919?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,10]],"date-time":"2024-10-10T07:45:59Z","timestamp":1728546359000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424016919"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":59,"alternative-id":["S0957417424016919"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124824","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Progressively-orthogonally-mapped EfficientNet for action recognition on time-range-Doppler signature","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124824","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"124824"}}