{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T05:49:47Z","timestamp":1732081787697,"version":"3.28.0"},"reference-count":69,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.eswa.2024.124010","type":"journal-article","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T21:21:57Z","timestamp":1716844917000},"page":"124010","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PB","title":["Effective multispike learning in a spiking neural network with a new temporal feedback backpropagation for breast cancer detection"],"prefix":"10.1016","volume":"252","author":[{"given":"Mehdi","family":"Heidarian","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9323-0312","authenticated-orcid":false,"given":"Gholamreza","family":"Karimi","sequence":"additional","affiliation":[]},{"given":"Mehrdad","family":"Payandeh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2024.124010_b0005","unstructured":"Abdul-Wahid, S., Spike-Based Classification of UCI Datasets with Multi-Layer Resume-Like Tempotron (2018). All Master's Theses. 1008. https:\/\/digitalcommons.cwu.edu\/etd\/1008."},{"key":"10.1016\/j.eswa.2024.124010_b0010","unstructured":"Albregtsen, F. Statistical texture measures computed from gray level coocurrence matrices, Image processing laboratory, department of informatics, university of oslo, pp. 1-14, 2008."},{"key":"10.1016\/j.eswa.2024.124010_b0015","doi-asserted-by":"crossref","unstructured":"Manar, N. A., Rasha, K., Amr, F., Mohamed, G., Muhammad, A. R., Ahmed, M. M. An efficient hybrid computer-aided breast cancer diagnosis system with wavelet packet transform and synthetically-generated contrast-enhanced spectral mammography images, Biomedical Signal Processing and Control, Volume 85, 2023, 104808, ISSN 1746-8094, 10.1016\/j.bspc.2023.104808.","DOI":"10.1016\/j.bspc.2023.104808"},{"key":"10.1016\/j.eswa.2024.124010_b0020","doi-asserted-by":"crossref","unstructured":"Antropova, N., Huynh, B. Q., Giger, M. L. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017 Oct;44(10):5162-5171. doi: 10.1002\/mp.12453. Epub 2017 Aug 12. PMID: 28681390; PMCID: PMC5646225.","DOI":"10.1002\/mp.12453"},{"key":"10.1016\/j.eswa.2024.124010_b0025","doi-asserted-by":"crossref","first-page":"4693","DOI":"10.1007\/s11063-021-10562-2","article-title":"A survey of encoding techniques for signal processing in spiking neural networks","volume":"53","author":"Auge","year":"2021","journal-title":"Neural Processing Letters"},{"key":"10.1016\/j.eswa.2024.124010_b0030","doi-asserted-by":"crossref","unstructured":"Rinisha, B., Sulochana, W., Arun, K. W. A Wavelet transform and neural network based segmentation & classification system for bone fracture detection, Optik, Volume 236, 2021, 166687,ISSN 0030-4026, 10.1016\/j.ijleo.2021.166687.","DOI":"10.1016\/j.ijleo.2021.166687"},{"issue":"2020","key":"10.1016\/j.eswa.2024.124010_b0035","first-page":"125","article-title":"Artificial neural network based breast cancer screening: A comprehensive review","volume":"12","author":"Bharati","year":"2020","journal-title":"International Journal of Computer Information Systems and Industrial Management Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0040","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1007\/s10278-022-00755-z","article-title":"Deep learning for breast MRI style transfer with limited training data","volume":"36","author":"Cao","year":"2023","journal-title":"Journal of Digital Imaging"},{"key":"10.1016\/j.eswa.2024.124010_b0045","article-title":"An approach to the prediction of breast cancer response to neoadjuvant chemotherapy based on tumor habitats in DCE-MRI images","volume":"ISSN 0957\u20134174","author":"Carvalho","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121081","article-title":"An approach to the prediction of breast cancer response to neoadjuvant chemotherapy based on tumor habitats in DCE-MRI images","author":"Carvalho","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0055","first-page":"1519","article-title":"LISNN: improving spiking neural networks with lateral interactions for robust object recognition","author":"Cheng","year":"2020","journal-title":"IJCAI."},{"key":"10.1016\/j.eswa.2024.124010_b0060","doi-asserted-by":"crossref","unstructured":"Chicca, E. et al., A multichip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 981\u2013993, May 2007.","DOI":"10.1109\/TCSI.2007.893509"},{"key":"10.1016\/j.eswa.2024.124010_b0065","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.3390\/s20051459","article-title":"Visual-based defect detection and classification approaches for industrial applications\u2014A survey","volume":"20","author":"Czimmermann","year":"2020","journal-title":"Sensors"},{"issue":"10","key":"10.1016\/j.eswa.2024.124010_b0070","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.1016\/j.neunet.2009.04.003","article-title":"A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection","volume":"22","author":"Dastidar","year":"2009","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2024.124010_b0075","doi-asserted-by":"crossref","unstructured":"Diehl, Peter & Neil, Dan & Binas, Jonathan & Cook, Matthew & Liu, Shih-Chii & Pfeiffer, Michael. (2015). Fast-Classifying, High-Accuracy Spiking Deep Networks Through Weight and Threshold Balancing. International Joint Conference on Neural Networks, IJCNN. 10.1109\/IJCNN.2015.7280696.","DOI":"10.1109\/IJCNN.2015.7280696"},{"key":"10.1016\/j.eswa.2024.124010_b0080","series-title":"The 2015 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"A two stage learning algorithm for a Growing-Pruning Spiking Neural Network for pattern classification problems","author":"Dora","year":"2015"},{"key":"10.1016\/j.eswa.2024.124010_b0085","doi-asserted-by":"crossref","unstructured":"Feng, L., Sheng, L., Zhang, L., Li, N., Xie, Y. Comparison of contrast-enhanced spectral mammography and contrast-enhanced MRI in Screening multifocal and multicentric lesions in breast cancer patients, Contrast Media & Molecular Imaging, vol. 2022, Article ID 4224701, 8 pages, 2022. 10.1155\/2022\/4224701.","DOI":"10.1155\/2022\/4224701"},{"key":"10.1016\/j.eswa.2024.124010_b0090","doi-asserted-by":"crossref","unstructured":"Fisher, R. A. (1950), The use of multiple measurements in taxonomic problems, Annual Eugenics, 7, Part II, 179-188 , also in \u201cContributions to Mathematical Statistics\u201d (John Wiley, NY).","DOI":"10.1111\/j.1469-1809.1936.tb02137.x"},{"key":"10.1016\/j.eswa.2024.124010_b0095","doi-asserted-by":"crossref","unstructured":"Barbara J. F., Paola, C., Panagiotis, K., Nina, P., Thomas H. H., Pascal A. T. B. Can supplementary contrast-enhanced MRI of the breast avoid needle biopsies in suspicious microcalcifications seen on mammography? A systematic review and meta-analysis, The Breast, Volume 56, 2021, Pages 53-60, ISSN 0960-9776, 10.1016\/j.breast.2021.02.002.","DOI":"10.1016\/j.breast.2021.02.002"},{"year":"2002","series-title":"Spiking Nerual Models: Single Neurons, Populations, Plasticity","author":"Gerstner","key":"10.1016\/j.eswa.2024.124010_b0100"},{"key":"10.1016\/j.eswa.2024.124010_b0105","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.clinimag.2017.08.007","article-title":"Review of breast augmentation and reconstruction for the radiologist with emphasis on MRI","volume":"47","author":"Green","year":"2018","journal-title":"Elsevier, Review article, Clinical Imaging"},{"key":"10.1016\/j.eswa.2024.124010_b0110","doi-asserted-by":"crossref","first-page":"1047008","DOI":"10.3389\/fnins.2023.1047008","article-title":"Ecient training of spiking neural networks with temporally-truncated local backpropagation through time","volume":"17","author":"Guo","year":"2023","journal-title":"Frontiers in Neuroscience"},{"issue":"4","key":"10.1016\/j.eswa.2024.124010_b0115","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TNNLS.2019.2919662","article-title":"Training spiking neural networks for cognitive tasks: A versatile framework compatible with various temporal codes","volume":"31","author":"Hong","year":"2020","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2024.124010_b0120","article-title":"Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review","author":"Houssein","year":"2020","journal-title":"Expert Systems With Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115580","article-title":"An automatic and efficient technique for tumor location identification and classification through breast MR images","volume":"185","author":"Jaglan","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0130","doi-asserted-by":"crossref","unstructured":"Kamaruzaman,F., Shafie, A. A., Mustafah, Y. M. Coincidence detection using spiking neurons with application to face recognition, Journal of Applied Mathematics, vol. 2015, Article ID 534198, 20 pages, 2015. 10.1155\/2015\/534198.","DOI":"10.1155\/2015\/534198"},{"key":"10.1016\/j.eswa.2024.124010_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2020.108826","article-title":"Automated detection of subthalamic nucleus in deep brain stimulation surgery for Parkinson\u2019s disease using microelectrode recordings and wavelet packet features","volume":"343","author":"Karthick","year":"2020","journal-title":"Journal of Neuroscience Methods"},{"key":"10.1016\/j.eswa.2024.124010_b0140","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2015.09.011","article-title":"Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications","volume":"78","author":"Kasabov","year":"2016","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2024.124010_b0145","doi-asserted-by":"crossref","first-page":"20705","DOI":"10.1007\/s11042-022-12671-z","article-title":"A novel technique for image classification using short-time Fourier transform and local binary pattern","volume":"81","author":"Khanna","year":"2022","journal-title":"Multimedia Tools and Applications"},{"key":"10.1016\/j.eswa.2024.124010_b0150","doi-asserted-by":"crossref","unstructured":"Kim, J., Kim, H., Huh, S., Lee, J., Choi, K. Deep neural networks with weighted spikes, Neurocomputing, Volume 311, 2018, Pages 373-386, ISSN 0925-2312, 10.1016\/j.neucom.2018.05.087.","DOI":"10.1016\/j.neucom.2018.05.087"},{"key":"10.1016\/j.eswa.2024.124010_b0155","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.neucom.2018.05.087","article-title":"Deep neural networks with weighted spikes","volume":"311","author":"Kim","year":"2018","journal-title":"Neurocomputing"},{"year":"1996","series-title":"An introduction to Neural Networks","author":"Kroese","key":"10.1016\/j.eswa.2024.124010_b0160"},{"issue":"15","key":"10.1016\/j.eswa.2024.124010_b0165","article-title":"SSTDP: Supervised spike timing dependent plasticity for efficient spiking neural network training","volume":"4","author":"Liu","year":"2021","journal-title":"Frontiers in Neuroscience"},{"key":"10.1016\/j.eswa.2024.124010_b0170","series-title":"International Joint Conference on Neural Networks","first-page":"293","article-title":"BPSpike: A backpropagation learning for all parameters in spiking neural networks with multiple layers and multiple spikes","author":"Matsuda","year":"2016"},{"key":"10.1016\/j.eswa.2024.124010_b0175","doi-asserted-by":"crossref","unstructured":"Mike\u0161, S., Haindl, M. Texture segmentation benchmark, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5647-5663, 1 Sept. 2022, doi: 10.1109\/TPAMI.2021.3075916.","DOI":"10.1109\/TPAMI.2021.3075916"},{"key":"10.1016\/j.eswa.2024.124010_b0180","doi-asserted-by":"crossref","unstructured":"Mirsadeghi, M., Shalchian, M., Kheradpisheh, S. R., Masquelier, T. STiDi-BP: Spike time displacement based error backpropagation in multilayer spiking neural networks, Neurocomputing, Volume 427, 2021, Pages 131-140, ISSN 0925-2312, 10.1016\/j.neucom.2020.11.052.","DOI":"10.1016\/j.neucom.2020.11.052"},{"issue":"2","key":"10.1016\/j.eswa.2024.124010_b0185","first-page":"9","article-title":"ISAR image improvement using STFT kernel width optimization based on minimum entropy criterion","volume":"41","author":"Modarres-Hashemi","year":"2009","journal-title":"AUT Journal of Electrical Engineering"},{"issue":"12","key":"10.1016\/j.eswa.2024.124010_b0190","doi-asserted-by":"crossref","first-page":"6178","DOI":"10.1109\/TNNLS.2018.2826721","article-title":"First-spike-based visual categorization using rewardmodulated STDP","volume":"29","author":"Mozafari","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2024.124010_b0195","doi-asserted-by":"crossref","first-page":"14207","DOI":"10.1038\/s41598-023-41331-x","article-title":"Fibroglandular tissue segmentation in breast MRI using vision transformers: A multi-institutional evaluation","volume":"13","author":"M\u00fcller-Franzes","year":"2023","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2024.124010_b0200","doi-asserted-by":"crossref","unstructured":"Pattnaik, T., Kanungo, P. Valley based multiclass thresholding for color image segmentation, 2017 2nd International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar, India, 2017, pp. 1-6, doi: 10.1109\/MAMI.2017.8307891.","DOI":"10.1109\/MAMI.2017.8307891"},{"issue":"2","key":"10.1016\/j.eswa.2024.124010_b0205","doi-asserted-by":"crossref","first-page":"358","DOI":"10.1109\/TNNLS.2019.2906158","article-title":"Selection and optimization of temporal spike encoding methods for spiking neural networks","volume":"31","author":"Petro","year":"2020","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"2","key":"10.1016\/j.eswa.2024.124010_b0210","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1162\/neco.2009.11-08-901","article-title":"Supervised learning in spiking neural networkswith ReSuMe: Sequence learning, classification, and spike shifting","volume":"22","author":"Ponulak","year":"2010","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2024.124010_b0215","doi-asserted-by":"crossref","unstructured":"Raimundo, J. N. C, Fontes, J. P. P., Gonzaga Mendes Magalh\u00e3es, L., Guevara Lopez, M.A. An innovative faster R-CNN-based framework for breast cancer detection in MRI. J Imaging. 2023 Aug 23;9(9):169. doi: 10.3390\/jimaging9090169. PMID: 37754933; PMCID: PMC10532017.","DOI":"10.3390\/jimaging9090169"},{"key":"10.1016\/j.eswa.2024.124010_b0220","doi-asserted-by":"crossref","unstructured":"Rashvand, P., Ahmadzadeh, M.R., Shayegh, F. Design and implementation of a spiking neural network with integrate-and-fire neuron model for pattern recognition. Int J Neural Syst. 2021 Mar;31(3):2050073. doi: 10.1142\/S0129065720500732. Epub 2020 Dec 22. PMID: 33353527.","DOI":"10.1142\/S0129065720500732"},{"key":"10.1016\/j.eswa.2024.124010_b0225","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1038\/s41416-018-0185-8","article-title":"A machine learning approach to radiogenomics of breast cancer: A study of 922 subjects and 529 DCE-MRI features","volume":"119","author":"Saha","year":"2018","journal-title":"British Journal of Cancer"},{"key":"10.1016\/j.eswa.2024.124010_b0230","doi-asserted-by":"crossref","DOI":"10.1002\/mma.6241","article-title":"Solving a classification task by spiking neural network with STDP based on rate and temporal input encoding","volume":"43","author":"Sboev","year":"2020","journal-title":"Mathematical Methods in the Applied Sciences."},{"key":"10.1016\/j.eswa.2024.124010_b0235","doi-asserted-by":"crossref","unstructured":"Schrauwen, B. Van Campenhout I. BSA, a fast and accurate spike train encoding scheme, in Proc. Int. Joint Conf. Neural Netw., vol. 4, 2003, pp. 2825\u20132830.","DOI":"10.1109\/IJCNN.2003.1224019"},{"key":"10.1016\/j.eswa.2024.124010_b0240","doi-asserted-by":"crossref","unstructured":"Shen, G., Zhao, D., Zeng, Y. Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks,Patterns,Volume 3, Issue 6,2022,100522,ISSN 2666-3899, 10.1016\/j.patter.2022.100522.","DOI":"10.1016\/j.patter.2022.100522"},{"issue":"5","key":"10.1016\/j.eswa.2024.124010_b0245","first-page":"1581","article-title":"DeepTempo: A hardware-friendly direct feedback alignment multi-layer tempotron learning rule for deep spiking neural networks","volume":"68","author":"Shi","year":"2021","journal-title":"IEEE Transactions on Circuits and Systems II: Express Briefs"},{"key":"10.1016\/j.eswa.2024.124010_b0250","unstructured":"Siping, H., Christine, P., Christopher, O.L. et al., Fully automated deep learning method for fibroglandular tissue segmentation in breast MRI, 10 May 2022, PREPRINT (Version 1) available at Research Square [10.21203\/rs.3.rs-1606703\/v1."},{"issue":"2","key":"10.1016\/j.eswa.2024.124010_b0255","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1162\/NECO_a_00396","article-title":"Supervised learning in multilayer spiking neural networks","volume":"25","author":"Sporea","year":"2013","journal-title":"Neural Computation"},{"issue":"6","key":"10.1016\/j.eswa.2024.124010_b0260","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1142\/S0129065710002553","article-title":"An STDP training algorithm for a spiking neural network with dynamic threshold neurons","volume":"20","author":"Strain","year":"2010","journal-title":"International Journal of Neural Systems"},{"key":"10.1016\/j.eswa.2024.124010_b0265","unstructured":"Sun, H., Cai, W., Yang, B., Cui, Y., Xia, Y., Yao, D. and Guo, D., 2022. A synapse-threshold synergistic learning approach for spiking neural networks. arXiv preprint arXiv:2206.06129."},{"issue":"12","key":"10.1016\/j.eswa.2024.124010_b0270","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1109\/TNNLS.2015.2404938","article-title":"DL-ReSuMe: A delay learning-based remote supervised method for spiking neurons","volume":"26","author":"Taherkhani","year":"2015","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2024.124010_b0275","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Maida, A. BP-STDP: Approximating backpropagation using spike timing dependent plasticity, Neurocomputing, Volume 330, 2019, Pages 39-47, ISSN 0925-2312, 10.1016\/j.neucom.2018.11.014.","DOI":"10.1016\/j.neucom.2018.11.014"},{"key":"10.1016\/j.eswa.2024.124010_b0280","first-page":"172","article-title":"Improving the efficiency of spiking network learning","volume":"2013","author":"Thiruvarudchelvan","year":"2013","journal-title":"International Conference on Neural Information Processing, Springer"},{"key":"10.1016\/j.eswa.2024.124010_b0285","unstructured":"Wang, Y., Ni, Z., Song, S., Yang, L., Huang, G. Revisiting locally supervised learning: an alternative to end-to-end training, presented at the ICLR 2021, the International Conference on Learning Representations, Online, 2021."},{"key":"10.1016\/j.eswa.2024.124010_b0290","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.126832","article-title":"BP-SRM: A directly training algorithm for spiking neural network constructed by spike response model","volume":"560","author":"Wang","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2024.124010_b0295","doi-asserted-by":"crossref","first-page":"252","DOI":"10.3389\/fnins.2019.00252","article-title":"A delay learning algorithm based on spike train kernels for spiking neurons","volume":"13","author":"Wang","year":"2019","journal-title":"Frontiers in Neuroscience."},{"key":"10.1016\/j.eswa.2024.124010_b0300","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.neunet.2020.02.011","article-title":"Supervised learning in spiking neural networks: A review of algorithms and evaluations","volume":"125","author":"Wang","year":"2020","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2024.124010_b0305","unstructured":"Mingqing, X., Qingyan, M., Zongpeng, Z., Di, H, Zhouchen, L. Online training through time for spiking neural networks part of advances in neural information processing systems 35 (NeurIPS 2022) Main Conference Track."},{"key":"10.1016\/j.eswa.2024.124010_b0310","doi-asserted-by":"crossref","unstructured":"Xiurui, X., Hong, Q., Guisong, L., Malu, Z. Efficient training of supervised spiking neural networks via the normalized perceptron based learning rule, Neurocomputing, Volume 241, 2017, Pages 152-163, ISSN 0925-2312, 10.1016\/j.neucom.2017.01.086.","DOI":"10.1016\/j.neucom.2017.01.086"},{"issue":"2013","key":"10.1016\/j.eswa.2024.124010_b0315","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.neunet.2013.02.003","article-title":"A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks","volume":"43","author":"Xu","year":"2013","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2024.124010_b0320","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1038\/s42256-023-00650-4","article-title":"Accurate online training of dynamical spiking neural networks through Forward Propagation Through Time","volume":"5","author":"Yin","year":"2023","journal-title":"Nat Mach Intell"},{"key":"10.1016\/j.eswa.2024.124010_b0325","doi-asserted-by":"crossref","unstructured":"Rezaei, Z. A review on image-based approaches for breast cancer detection, segmentation, and classification, Expert Systems with Applications,Volume 182,2021,115204,ISSN 0957-4174, 10.1016\/j.eswa.2021.115204.","DOI":"10.1016\/j.eswa.2021.115204"},{"issue":"3","key":"10.1016\/j.eswa.2024.124010_b0330","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1109\/JBHI.2018.2842919","article-title":"Automatic Detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal","volume":"23","author":"Zarei","year":"2019","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2024.124010_b0335","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Chan, S., Park, V. Y., Chang, K.T., Mehta, S., Kim, M. J. Automatic detection and segmentation of breast cancer on MRI using mask R-CNN trained on non\u2013fat-sat images and tested on fat-sat images, Academic Radiology, Volume 29, Supplement 1, 2022,Pages S135-S144, ISSN 1076-6332, 10.1016\/j.acra.2020.12.001.","DOI":"10.1016\/j.acra.2020.12.001"},{"key":"10.1016\/j.eswa.2024.124010_b0340","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Liu, Y. L., Nie, K., Zhou, J., et al. Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification. Acad Radiol. 2023 Jan 9:S1076-6332(22)00695-X. doi: 10.1016\/j.acra.2022.12.038. Epub ahead of print. PMID: 36631349.","DOI":"10.1016\/j.acra.2022.12.038"},{"key":"10.1016\/j.eswa.2024.124010_b0345","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.neucom.2020.03.079","article-title":"Supervised learning in spiking neural networks with synaptic delay-weight plasticity","volume":"409","author":"Zhang","year":"2020","journal-title":"Neurocomputing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424008765?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417424008765?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T03:53:32Z","timestamp":1732074812000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417424008765"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":69,"alternative-id":["S0957417424008765"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124010","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Effective multispike learning in a spiking neural network with a new temporal feedback backpropagation for breast cancer detection","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2024.124010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"124010"}}