{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T04:15:52Z","timestamp":1730434552331,"version":"3.28.0"},"reference-count":102,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,20]],"date-time":"2023-10-20T00:00:00Z","timestamp":1697760000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100014440","name":"Espana Ministerio de Ciencia e Innovacion","doi-asserted-by":"publisher","award":["PID2020-115454GB-C21"],"id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012818","name":"Comunidad de Madrid","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012818","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.eswa.2023.122264","type":"journal-article","created":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T15:18:37Z","timestamp":1697901517000},"page":"122264","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"PE","title":["Bike sharing and cable car demand forecasting using machine learning and deep learning multivariate time series approaches"],"prefix":"10.1016","volume":"238","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1260-8112","authenticated-orcid":false,"given":"C\u00e9sar","family":"Pel\u00e1ez-Rodr\u00edguez","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4456-9886","authenticated-orcid":false,"given":"Jorge","family":"P\u00e9rez-Aracil","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9604-0554","authenticated-orcid":false,"given":"Du\u0161an","family":"Fister","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8790-1730","authenticated-orcid":false,"given":"Ricardo","family":"Torres-L\u00f3pez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4048-1676","authenticated-orcid":false,"given":"Sancho","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.eswa.2023.122264_b1","doi-asserted-by":"crossref","first-page":"1665","DOI":"10.1007\/s00521-018-3470-9","article-title":"A deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system","volume":"31","author":"Ai","year":"2019","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.eswa.2023.122264_b2","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.apenergy.2015.08.011","article-title":"An analog ensemble for short-term probabilistic solar power forecast","volume":"157","author":"Alessandrini","year":"2015","journal-title":"Applied Energy"},{"key":"10.1016\/j.eswa.2023.122264_b3","doi-asserted-by":"crossref","first-page":"768","DOI":"10.1016\/j.renene.2014.11.061","article-title":"A novel application of an analog ensemble for short-term wind power forecasting","volume":"76","author":"Alessandrini","year":"2015","journal-title":"Renewable Energy"},{"key":"10.1016\/j.eswa.2023.122264_b4","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2023.3250230","article-title":"Predicting bike usage and optimizing operations at repair shops in bike sharing systems","author":"Alzaman","year":"2023","journal-title":"IEEE Access"},{"issue":"11","key":"10.1016\/j.eswa.2023.122264_b5","doi-asserted-by":"crossref","first-page":"4205","DOI":"10.1007\/s00500-016-2288-6","article-title":"A novel methodology to predict urban traffic congestion with ensemble learning","volume":"20","author":"Asencio-Cort\u00e9s","year":"2016","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2023.122264_b6","series-title":"2017 5th IEEE international conference on models and technologies for intelligent transportation systems (MT-ITS)","first-page":"374","article-title":"Modeling bike availability in a bike-sharing system using machine learning","author":"Ashqar","year":"2017"},{"year":"2022","series-title":"Uso del servicio Bicing de la ciudad de Barcelona","author":"Ayuntamiento de Barcelona","key":"10.1016\/j.eswa.2023.122264_b7"},{"year":"2022","series-title":"Bicimad. Alta de usuarios y usos por d\u00eda del servicio p\u00fablico de bicicleta el\u00e9ctrica","author":"Ayuntamiento de Madrid","key":"10.1016\/j.eswa.2023.122264_b8"},{"year":"2022","series-title":"Telef\u00e9rico de madrid. n\u00famero de usuarios","author":"Ayuntamiento de Madrid","key":"10.1016\/j.eswa.2023.122264_b9"},{"issue":"4817","key":"10.1016\/j.eswa.2023.122264_b10","first-page":"41","article-title":"Hierarchical organization of urban mobility and its connection with city livability","volume":"10","author":"Bassolas","year":"2019","journal-title":"Nature Communications"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b11","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1051\/ro\/2011102","article-title":"Balancing the stations of a self service \u201cbike hire\u201d system","volume":"45","author":"Benchimol","year":"2011","journal-title":"RAIRO-Operations Research"},{"key":"10.1016\/j.eswa.2023.122264_b12","doi-asserted-by":"crossref","DOI":"10.1109\/TSC.2023.3241659","article-title":"Two-stream graph convolutional network-incorporated latent feature analysis","author":"Bi","year":"2023","journal-title":"IEEE Transactions on Services Computing"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b13","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2023.122264_b14","doi-asserted-by":"crossref","DOI":"10.1038\/ncomms10793","article-title":"Understanding congested travel in urban areas","volume":"7","author":"\u00c7olak","year":"2016","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2023.122264_b15","first-page":"1","article-title":"Road accident risk prediction using generalized regression neural network optimized with self-organizing map","volume":"2022","author":"Charandabi","year":"2022","journal-title":"Neural Computing and Applications"},{"issue":"6","key":"10.1016\/j.eswa.2023.122264_b16","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1049\/iet-its.2019.0007","article-title":"Predicting station level demand in a bike-sharing system using recurrent neural networks","volume":"14","author":"Chen","year":"2020","journal-title":"IET Intelligent Transport Systems"},{"year":"2016","series-title":"Long short-term memory-networks for machine reading","author":"Cheng","key":"10.1016\/j.eswa.2023.122264_b17"},{"year":"2014","series-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"Chung","key":"10.1016\/j.eswa.2023.122264_b18"},{"key":"10.1016\/j.eswa.2023.122264_b19","doi-asserted-by":"crossref","first-page":"124337","DOI":"10.1109\/ACCESS.2021.3110794","article-title":"Deep learning for short-term prediction of available bikes on bike-sharing stations","volume":"9","author":"Collini","year":"2021","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b20","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2023.122264_b21","doi-asserted-by":"crossref","first-page":"15888","DOI":"10.1073\/pnas.1408439111","article-title":"Dynamic population mapping using mo-bile phone data","volume":"111","author":"Deville","year":"2014","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b22","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1007\/s00521-013-1522-8","article-title":"Extreme learning machine and its applications","volume":"25","author":"Ding","year":"2014","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.eswa.2023.122264_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114659","article-title":"Fast and efficient discovery of key bike stations in bike sharing systems big datasets","volume":"172","author":"Dokuz","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.122264_b24","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1038\/nature02541","article-title":"Modelling disease outbreaks in realistic urban social networks","volume":"429","author":"Eubank","year":"2004","journal-title":"Nature"},{"issue":"10","key":"10.1016\/j.eswa.2023.122264_b25","doi-asserted-by":"crossref","first-page":"7177","DOI":"10.1007\/s10489-021-02249-x","article-title":"Two robust long short-term memory frameworks for trading stocks","volume":"51","author":"Fister","year":"2021","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2023.122264_b26","series-title":"Competition and cooperation in neural nets","first-page":"267","article-title":"Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition","author":"Fukushima","year":"1982"},{"issue":"14\u201315","key":"10.1016\/j.eswa.2023.122264_b27","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","article-title":"Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences","volume":"32","author":"Gardner","year":"1998","journal-title":"Atmospheric Enviroment"},{"key":"10.1016\/j.eswa.2023.122264_b28","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.tranpol.2017.05.005","article-title":"Cable cars in urban transport: travel time savings from La Paz-El Alto (Bolivia)","volume":"75","author":"Garsous","year":"2019","journal-title":"Transport Policy"},{"year":"1823","series-title":"Theoria combinationis observationum erroribus minimis obnoxiae, vol. 2","author":"Gauss","key":"10.1016\/j.eswa.2023.122264_b29"},{"year":"2013","series-title":"Generating sequences with recurrent neural networks","author":"Graves","key":"10.1016\/j.eswa.2023.122264_b30"},{"key":"10.1016\/j.eswa.2023.122264_b31","series-title":"2013 IEEE international conference on acoustics, speech and signal processing","first-page":"6645","article-title":"Speech recognition with deep recurrent neural networks","author":"Graves","year":"2013"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b32","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1016\/j.ijforecast.2020.11.006","article-title":"Big data from dynamic pricing: A smart approach to tourism demand forecasting","volume":"37","author":"Guizzardi","year":"2021","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2023.122264_b33","first-page":"1","article-title":"User expectations and perceptions towards new public transport infrastructure: evaluating a cable car in Bogot\u00e1","author":"Guzman","year":"2022","journal-title":"Transportation"},{"key":"10.1016\/j.eswa.2023.122264_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119749","article-title":"Forecasting bike sharing demand using Quantum Bayesian Network","author":"Harikrishnakumar","year":"2023","journal-title":"Expert Systems with Applications"},{"issue":"730","key":"10.1016\/j.eswa.2023.122264_b35","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 global reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Quarterly Journal of the Royal Meteorological Society"},{"key":"10.1016\/j.eswa.2023.122264_b36","series-title":"Proceedings of 3rd international conference on document analysis and recognition, vol. 1","first-page":"278","article-title":"Random decision forests","author":"Ho","year":"1995"},{"issue":"8","key":"10.1016\/j.eswa.2023.122264_b37","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2023.122264_b38","series-title":"HEART 2017: 6th Symposium of the european association for research in transportation","first-page":"1","article-title":"Travel demand estimation of cable cars supplementing public transport","author":"Hofer","year":"2017"},{"key":"10.1016\/j.eswa.2023.122264_b39","series-title":"Presented at transport research arena 2018: A digital era for transport","first-page":"1","article-title":"Travel demand estimation for cable car transport in the urban areas shown for the moderate-sized city of graz, Austria","author":"Hofer","year":"2018"},{"year":"2005","series-title":"Cable-drawn urban transport systems, vol. 77","author":"Hoffmann","key":"10.1016\/j.eswa.2023.122264_b40"},{"issue":"12","key":"10.1016\/j.eswa.2023.122264_b41","doi-asserted-by":"crossref","first-page":"1647","DOI":"10.1049\/iet-its.2020.0305","article-title":"Forecasting usage and bike distribution of dockless bike-sharing using journey data","volume":"14","author":"Hua","year":"2020","journal-title":"IET Intelligent Transport Systems"},{"issue":"10","key":"10.1016\/j.eswa.2023.122264_b42","doi-asserted-by":"crossref","first-page":"2216","DOI":"10.1587\/transinf.2018EDP7410","article-title":"Sentence-embedding and similarity via hybrid bidirectional-lstm and cnn utilizing weighted-pooling attention","volume":"103","author":"Huang","year":"2020","journal-title":"IEICE TRANSACTIONS on Information and Systems"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b43","first-page":"41","article-title":"Applications of support vector machine (SVM) learning in cancer genomics","volume":"15","author":"Huang","year":"2018","journal-title":"Cancer Genomics & Proteomics"},{"issue":"1\u20133","key":"10.1016\/j.eswa.2023.122264_b44","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.122264_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.119919","article-title":"Actual rating calculation of the zoom cloud meetings app using user reviews on google play store with sentiment annotation of BERT and hybridization of RNN and LSTM","volume":"223","author":"Islam","year":"2023","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"10.1016\/j.eswa.2023.122264_b46","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","article-title":"Deep learning for time series classification: a review","volume":"33","author":"Ismail Fawaz","year":"2019","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"2","key":"10.1016\/j.eswa.2023.122264_b47","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.3934\/era.2023051","article-title":"A spatio-temporal deep learning model for short-term bike-sharing demand prediction","volume":"31","author":"Jia","year":"2023","journal-title":"Electronic Research Archive"},{"key":"10.1016\/j.eswa.2023.122264_b48","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1016\/j.jtrangeo.2018.01.001","article-title":"Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations","volume":"66","author":"Kim","year":"2018","journal-title":"Journal of Transport Geography"},{"key":"10.1016\/j.eswa.2023.122264_b49","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1023\/A:1005259324588","article-title":"Micro-simulation of daily activity-travel patterns for travel demand forecasting","volume":"27","author":"Kitamura","year":"2000","journal-title":"Transportation"},{"key":"10.1016\/j.eswa.2023.122264_b50","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1038\/449287a","article-title":"The wireless epidemic","volume":"449","author":"Kleinberg","year":"2007","journal-title":"Nature"},{"issue":"6490","key":"10.1016\/j.eswa.2023.122264_b51","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1126\/science.abb4218","article-title":"The effect of human mobility and control measures on the COVID-19 epidemic in China","volume":"368","author":"Kraemer","year":"2020","journal-title":"Science"},{"issue":"6","key":"10.1016\/j.eswa.2023.122264_b52","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Communications of the ACM"},{"key":"10.1016\/j.eswa.2023.122264_b53","article-title":"Short-term forecast of bicycle usage in bike sharing systems: a spatial-temporal memory network","author":"Li","year":"2021","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2023.122264_b54","article-title":"Improving short-term bike sharing demand forecast through an irregular convolutional neural network","volume":"147","author":"Li","year":"2023","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"key":"10.1016\/j.eswa.2023.122264_b55","doi-asserted-by":"crossref","first-page":"177856","DOI":"10.1109\/ACCESS.2019.2958378","article-title":"Time-series representation and clustering approaches for sharing bike usage mining","volume":"7","author":"Li","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.122264_b56","doi-asserted-by":"crossref","unstructured":"Li, Y., Zheng, Y., Zhang, H., & Chen, L. (2015). Traffic prediction in a bike-sharing system. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems (pp. 1\u201310).","DOI":"10.1145\/2820783.2820837"},{"key":"10.1016\/j.eswa.2023.122264_b57","doi-asserted-by":"crossref","unstructured":"Li, Y., Zhu, Z., Kong, D., Xu, M., & Zhao, Y. (2019). Learning heterogeneous spatial-temporal representation for bike-sharing demand prediction. In Proceedings of the AAAI conference on artificial intelligence, vol. 33 (pp. 1004\u20131011).","DOI":"10.1609\/aaai.v33i01.33011004"},{"key":"10.1016\/j.eswa.2023.122264_b58","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.conb.2019.01.011","article-title":"Backpropagation through time and the brain","volume":"55","author":"Lillicrap","year":"2019","journal-title":"Current Opinion in Neurobiology"},{"key":"10.1016\/j.eswa.2023.122264_b59","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.trc.2018.10.011","article-title":"Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach","volume":"97","author":"Lin","year":"2018","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"key":"10.1016\/j.eswa.2023.122264_b60","first-page":"92262","article-title":"Rental prediction in bicycle-sharing system using recurrent neural network","volume":"8","author":"Lu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.122264_b61","series-title":"2017 IEEE second international conference on data science in cyberspace (DSC)","first-page":"35","article-title":"Spatio-temporal distribution pattern of cable car passenger flow in panholidays: A case study of Huangshan Scenic Area","author":"Lu","year":"2017"},{"issue":"12","key":"10.1016\/j.eswa.2023.122264_b62","doi-asserted-by":"crossref","first-page":"9756","DOI":"10.1109\/TPAMI.2021.3132503","article-title":"A novel approach to large-scale dynamically weighted directed network representation","volume":"44","author":"Luo","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2023.122264_b63","article-title":"Mobility pattern recognition based prediction for the subway station related bike-sharing trips","volume":"133","author":"Lv","year":"2021","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b64","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1016\/j.cstp.2021.01.014","article-title":"A simulation-optimization study of the inventory of a bike-sharing system: The case of Mexico City Ecobici\u2019s system","volume":"9","author":"M\u00e1rquez","year":"2021","journal-title":"Case Studies on Transport Policy"},{"key":"10.1016\/j.eswa.2023.122264_b65","doi-asserted-by":"crossref","DOI":"10.1016\/j.scs.2021.103029","article-title":"Urban mobility scenarios until the 2030s","volume":"72","author":"Miskolczi","year":"2021","journal-title":"Sustainable Cities and Society"},{"issue":"12","key":"10.1016\/j.eswa.2023.122264_b66","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nature biotechnology"},{"key":"10.1016\/j.eswa.2023.122264_b67","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1016\/j.proeng.2012.09.545","article-title":"Modelling using polynomial regression","volume":"48","author":"Ostertagov\u00e1","year":"2012","journal-title":"Procedia Engineering"},{"issue":"4","key":"10.1016\/j.eswa.2023.122264_b68","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/TASLP.2016.2520371","article-title":"Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval","volume":"24","author":"Palangi","year":"2016","journal-title":"IEEE\/ACM Transactions on Audio, Speech, and Language Processing"},{"key":"10.1016\/j.eswa.2023.122264_b69","doi-asserted-by":"crossref","first-page":"8166","DOI":"10.1038\/ncomms9166","article-title":"Returners and explorers dichotomy in human mobility","volume":"6","author":"Pappalardo","year":"2015","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2023.122264_b70","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.126435","article-title":"Deep learning ensembles for accurate fog-related low-visibility events forecasting","volume":"549","author":"Pel\u00e1ez-Rodr\u00edguez","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.122264_b71","doi-asserted-by":"crossref","DOI":"10.1155\/2021\/5486328","article-title":"CNN-GRU-AM for shared bicycles demand forecasting","volume":"2021","author":"Peng","year":"2021","journal-title":"Computational Intelligence and Neuroscience"},{"key":"10.1016\/j.eswa.2023.122264_b72","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2021.121756","article-title":"Effective energy consumption forecasting using empirical wavelet transform and long short-term memory","volume":"238","author":"Peng","year":"2022","journal-title":"Energy"},{"key":"10.1016\/j.eswa.2023.122264_b73","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1109\/TKDE.2016.2592527","article-title":"Scalable daily human behavioral pattern mining from multivariate temporal data","volume":"28","author":"Rawassizadeh","year":"2016","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2023.122264_b74","first-page":"35","article-title":"A study of error variance estimation in lasso regression","author":"Reid","year":"2016","journal-title":"Statistica Sinica"},{"issue":"6088","key":"10.1016\/j.eswa.2023.122264_b75","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2023.122264_b76","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.gloplacha.2019.04.013","article-title":"Near-optimal selection of representative measuring points for robust temperature field reconstruction with the CRO-SL and analogue methods","volume":"178","author":"Salcedo-Sanz","year":"2019","journal-title":"Global and Planetary Change"},{"year":"2021","series-title":"Context-aware demand prediction in bike sharing systems: Incorporating spatial, meteorological and calendrical context","author":"Sardinha","key":"10.1016\/j.eswa.2023.122264_b77"},{"key":"10.1016\/j.eswa.2023.122264_b78","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.comcom.2020.02.007","article-title":"Using data mining techniques for bike sharing demand prediction in metropolitan city","volume":"153","author":"Sathishkumar","year":"2020","journal-title":"Computer Communications"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b79","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Statistics and Computing"},{"issue":"5968","key":"10.1016\/j.eswa.2023.122264_b80","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1126\/science.1177170","article-title":"Limits of predictability in human mobility","volume":"327","author":"Song","year":"2010","journal-title":"Science"},{"key":"10.1016\/j.eswa.2023.122264_b81","series-title":"On event detection from spatial time series for urban traffic applications","first-page":"221","volume":"vol. 9580","author":"Souto","year":"2016"},{"key":"10.1016\/j.eswa.2023.122264_b82","doi-asserted-by":"crossref","DOI":"10.1016\/j.inffus.2023.02.033","article-title":"The relative roles of different land-use types in bike-sharing demand: A machine learning-based multiple interpolation fusion method","author":"Sun","year":"2023","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.122264_b83","series-title":"ICML","first-page":"1","article-title":"Generating text with recurrent neural networks","author":"Sutskever","year":"2011"},{"issue":"11","key":"10.1016\/j.eswa.2023.122264_b84","doi-asserted-by":"crossref","DOI":"10.1093\/nsr\/nwab148","article-title":"Mobility in China, 2020: a tale of four phases","volume":"8","author":"Tan","year":"2021","journal-title":"National Science Review"},{"key":"10.1016\/j.eswa.2023.122264_b85","article-title":"Intelligent management of bike sharing in smart cities using machine learning and Internet of Things","volume":"67","author":"Tekouabou","year":"2021","journal-title":"Sustainable Cities and Society"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b86","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"Journal of the Royal Statistical Society. Series B. Statistical Methodology"},{"issue":"3","key":"10.1016\/j.eswa.2023.122264_b87","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/s10115-018-1186-x","article-title":"Analyzing large-scale human mobility data: a survey of machine learning methods and applications","volume":"58","author":"Toch","year":"2019","journal-title":"Knowledge and Information Systems"},{"issue":"Nov","key":"10.1016\/j.eswa.2023.122264_b88","first-page":"45","article-title":"Support vector machine active learning with applications to text classification","volume":"2","author":"Tong","year":"2001","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b89","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1089\/big.2020.0159","article-title":"Deep learning for time series forecasting: a survey","volume":"9","author":"Torres","year":"2021","journal-title":"Big Data"},{"issue":"13","key":"10.1016\/j.eswa.2023.122264_b90","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.3390\/math10132187","article-title":"Analysis of machine learning approaches\u2019 performance in prediction problems with human activity patterns","volume":"10","author":"Torres-L\u00f3pez","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.eswa.2023.122264_b91","series-title":"Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. Neural computing: New challenges and perspectives for the new millennium, vol. 6","first-page":"348","article-title":"Support vector machine for regression and applications to financial forecasting","author":"Trafalis","year":"2000"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b92","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0169-2070(96)00695-4","article-title":"Recent advances and applications in the field of short-term traffic forecasting","volume":"13","author":"Van Arem","year":"1997","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2023.122264_b93","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1016\/j.renene.2014.08.060","article-title":"Wind resource estimates with an analog ensemble approach","volume":"74","author":"Vanvyve","year":"2015","journal-title":"Renewable Energy"},{"key":"10.1016\/j.eswa.2023.122264_b94","article-title":"Season wise bike sharing demand analysis using random forest algorithm","author":"Ve","year":"2020","journal-title":"Computational Intelligence"},{"key":"10.1016\/j.eswa.2023.122264_b95","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.trpro.2018.11.029","article-title":"Short-term prediction for bike-sharing service using machine learning","volume":"34","author":"Wang","year":"2018","journal-title":"Transportation Research Procedia"},{"issue":"1","key":"10.1016\/j.eswa.2023.122264_b96","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1109\/THMS.2017.2776605","article-title":"Risky driver recognition based on vehicle speed time series","volume":"48","author":"Wang","year":"2018","journal-title":"IEEE Transactions on Human-Machine Systems"},{"key":"10.1016\/j.eswa.2023.122264_b97","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119447","article-title":"A censored semi-bandit model for resource allocation in bike sharing systems","volume":"216","author":"Xie","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.122264_b98","article-title":"Multi-task supply-demand prediction and reliability analysis for docked bike-sharing systems via transformer-encoder-based neural processes","volume":"147","author":"Xu","year":"2023","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"key":"10.1016\/j.eswa.2023.122264_b99","doi-asserted-by":"crossref","DOI":"10.1016\/j.compenvurbsys.2020.101521","article-title":"Using graph structural information about flows to enhance short-term demand prediction in bike-sharing systems","volume":"83","author":"Yang","year":"2020","journal-title":"Computers, Environment and Urban Systems"},{"key":"10.1016\/j.eswa.2023.122264_b100","doi-asserted-by":"crossref","DOI":"10.1155\/2023\/7407748","article-title":"Short-term forecasting of dockless bike-sharing demand with the built environment and weather","volume":"2023","author":"Yang","year":"2023","journal-title":"Journal of Advanced Transportation"},{"issue":"36","key":"10.1016\/j.eswa.2023.122264_b101","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1177\/0361198118801354","article-title":"Use of deep learning to predict daily usage of bike sharing systems","volume":"2672","author":"Yang","year":"2018","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2023.122264_b102","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2021.127930","article-title":"Green travel mobility of dockless bike-sharing based on trip data in big cities: a spatial network analysis","volume":"313","author":"Zhang","year":"2021","journal-title":"Journal of Cleaner Production"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423027665?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423027665?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T15:44:29Z","timestamp":1730389469000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423027665"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":102,"alternative-id":["S0957417423027665"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.122264","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Bike sharing and cable car demand forecasting using machine learning and deep learning multivariate time series approaches","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.122264","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"122264"}}