{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:02:53Z","timestamp":1732042973892},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012456","name":"Chinese National Funding of Social Sciences","doi-asserted-by":"publisher","award":["20BGL108"],"id":[{"id":"10.13039\/501100012456","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012325","name":"National Office for Philosophy and Social Sciences","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012325","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.eswa.2023.121136","type":"journal-article","created":{"date-parts":[[2023,8,10]],"date-time":"2023-08-10T00:51:41Z","timestamp":1691628701000},"page":"121136","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing"],"prefix":"10.1016","volume":"234","author":[{"given":"Xiaoqiao","family":"Wang","sequence":"first","affiliation":[]},{"given":"Mingzhou","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Conghu","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Ling","sequence":"additional","affiliation":[]},{"given":"Xi","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.121136_b0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102177","article-title":"Degradation curves integration in physics-based models: Towards the predictive maintenance of industrial robots","volume":"71","author":"Aivaliotis","year":"2021","journal-title":"Robotics and Computer-Integrated Manufacturing"},{"issue":"1","key":"10.1016\/j.eswa.2023.121136_b0010","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/s12559-022-10084-6","article-title":"A Multilayer Network-Based Approach to Represent, Explore and Handle Convolutional Neural Networks","volume":"15","author":"Amelio","year":"2023","journal-title":"Cognitive Computation"},{"issue":"6","key":"10.1016\/j.eswa.2023.121136_b0015","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1108\/IR-02-2020-0031","article-title":"Fault data screening and failure rate prediction framework-based bathtub curve on industrial robots","volume":"47","author":"Bai","year":"2020","journal-title":"Ind. Robot"},{"issue":"1","key":"10.1016\/j.eswa.2023.121136_b0020","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1007\/s11042-021-10984-z","article-title":"A machine learning based sentient multimedia framework to increase safety at work","volume":"81","author":"Bonifazi","year":"2022","journal-title":"Multimedia Tools and Applications"},{"key":"10.1016\/j.eswa.2023.121136_b0025","doi-asserted-by":"crossref","first-page":"55537","DOI":"10.1109\/ACCESS.2021.3070395","article-title":"Knowledge Graphs in Manufacturing and Production: A Systematic Literature Review","volume":"9","author":"Buchgeher","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.121136_b0030","doi-asserted-by":"crossref","first-page":"83105","DOI":"10.1109\/ACCESS.2021.3085085","article-title":"Evaluation of Deep Learning Models for Multi-Step Ahead Time Series Prediction","volume":"9","author":"Chandra","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.121136_b0035","doi-asserted-by":"crossref","unstructured":"Cao, Q., Zanni-Merk, C., Samet, A., Reich, C., Beuvron, F. de B. de, Beckmann, A., & Giannetti, C. (2022). KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Robotics and Computer-Integrated Manufacturing, 74, 102281. 10.1016\/j.rcim.2021.102281.","DOI":"10.1016\/j.rcim.2021.102281"},{"key":"10.1016\/j.eswa.2023.121136_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2020.103298","article-title":"Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges","volume":"123","author":"Dalzochio","year":"2020","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.121136_b0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118435","article-title":"Evaluating time series encoding techniques for Predictive Maintenance","volume":"210","author":"De Santo","year":"2022","journal-title":"Expert Systems with Applications"},{"issue":"9","key":"10.1016\/j.eswa.2023.121136_b0050","doi-asserted-by":"crossref","first-page":"6069","DOI":"10.1109\/TII.2020.2967556","article-title":"A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders","volume":"16","author":"Essien","year":"2020","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.eswa.2023.121136_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108153","article-title":"Perception modelling by invariant representation of deep learning for automated structural diagnostic in aircraft maintenance: A study case using DeepSHM","volume":"165","author":"Ewald","year":"2022","journal-title":"MECHANICAL SYSTEMS AND SIGNAL PROCESSING"},{"key":"10.1016\/j.eswa.2023.121136_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103800","article-title":"Data-driven decision support tool for production planning: A framework combining association rules and simulation","volume":"144","author":"Fani","year":"2023","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.121136_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103678","article-title":"Potential, challenges and future directions for deep learning in prognostics and health management applications","volume":"92","author":"Fink","year":"2020","journal-title":"ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE"},{"key":"10.1016\/j.eswa.2023.121136_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2021.103554","article-title":"Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case","volume":"134","author":"Giordano","year":"2022","journal-title":"Comput. Ind."},{"issue":"3","key":"10.1016\/j.eswa.2023.121136_b0075","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1145\/3418294","article-title":"Knowledge graphs","volume":"64","author":"Gutierrez","year":"2021","journal-title":"Communications of the ACM"},{"issue":"11","key":"10.1016\/j.eswa.2023.121136_b0080","doi-asserted-by":"crossref","DOI":"10.3390\/app11115250","article-title":"Vibration Source Signal Separation of Rotating Machinery Equipment and Robot Bearings Based on Low Rank Constraint","volume":"11","author":"He","year":"2021","journal-title":"Applied Sciences"},{"issue":"4","key":"10.1016\/j.eswa.2023.121136_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3447772","article-title":"Knowledge Graphs","volume":"54","author":"Hogan","year":"2022","journal-title":"ACM Computing Surveys"},{"issue":"5","key":"10.1016\/j.eswa.2023.121136_b0090","doi-asserted-by":"crossref","first-page":"E1055","DOI":"10.3390\/s19051055","article-title":"A Data-Driven Approach for the Diagnosis of Mechanical Systems Using Trained Subtracted Signal Spectrograms","volume":"19","author":"Huh","year":"2019","journal-title":"Sensors (Basel, Switzerland)"},{"issue":"4","key":"10.1016\/j.eswa.2023.121136_b0095","doi-asserted-by":"crossref","first-page":"1034","DOI":"10.1016\/j.eswa.2012.08.039","article-title":"Mining association rules for the quality improvement of the production process","volume":"40","author":"Kamsu-Foguem","year":"2013","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2023.121136_b0100","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.omega.2006.06.011","article-title":"Semantic network representation of computer-mediated discussions: Conceptual facilitation form and knowledge acquisition","volume":"36","author":"Khalifa","year":"2008","journal-title":"Omega"},{"issue":"7648","key":"10.1016\/j.eswa.2023.121136_b0105","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1038\/544023a","article-title":"Smart manufacturing must embrace big data","volume":"544","author":"Kusiak","year":"2017","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2023.121136_b0110","doi-asserted-by":"crossref","first-page":"164720","DOI":"10.1109\/ACCESS.2021.3135432","article-title":"Toward Industrial IoT: Integrated Architecture of an OPC UA Synergy Platform","volume":"9","author":"Lee","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.121136_b0115","doi-asserted-by":"crossref","first-page":"49557","DOI":"10.1109\/ACCESS.2021.3069256","article-title":"A Novel Predictive Maintenance Method Based on Deep Adversarial Learning in the Intelligent Manufacturing System","volume":"9","author":"Liu","year":"2021","journal-title":"IEEE Access"},{"issue":"12","key":"10.1016\/j.eswa.2023.121136_b0120","doi-asserted-by":"crossref","first-page":"1433","DOI":"10.1007\/s11265-021-01718-3","article-title":"Machinery Fault Diagnosis Based on Deep Learning for Time Series Analysis and Knowledge Graphs","volume":"93","author":"Liu","year":"2021","journal-title":"Journal of Signal Processing Systems"},{"issue":"3","key":"10.1016\/j.eswa.2023.121136_b0125","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1109\/JAS.2019.1911447","article-title":"An embedded feature selection method for imbalanced data classification","volume":"6","author":"Liu","year":"2019","journal-title":"IEEE\/CAA Journal of Automatica Sinica"},{"key":"10.1016\/j.eswa.2023.121136_b0130","article-title":"Development of an Explainable Fault Diagnosis Framework Based on Sensor Data Imagification: A Case Study of the Robotic Spot-Welding Process","volume":"1\u20131","author":"Lee","year":"2021","journal-title":"IEEE Transactions on Industrial Informatics"},{"issue":"5","key":"10.1016\/j.eswa.2023.121136_b0135","doi-asserted-by":"crossref","DOI":"10.3390\/app11052370","article-title":"Multi-Objective Instance Weighting-Based Deep Transfer Learning Network for Intelligent Fault Diagnosis","volume":"11","author":"Lee","year":"2021","journal-title":"Applied Sciences"},{"issue":"1","key":"10.1016\/j.eswa.2023.121136_b0140","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s10489-019-01520-6","article-title":"Dynamic uncertain causality graph based on Intuitionistic fuzzy sets and its application to root cause analysis","volume":"50","author":"Li","year":"2020","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2023.121136_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2021.101515","article-title":"A knowledge graph-based data representation approach for IIoT-enabled cognitive manufacturing","volume":"51","author":"Liu","year":"2022","journal-title":"ADVANCED ENGINEERING INFORMATICS"},{"key":"10.1016\/j.eswa.2023.121136_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103623","article-title":"The architectural design and implementation of a digital platform for Industry 4.0 SME collaboration","volume":"138","author":"Liu","year":"2022","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.121136_b0155","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1016\/j.jmsy.2022.02.001","article-title":"Outlook on human-centric manufacturing towards Industry 5.0","volume":"62","author":"Lu","year":"2022","journal-title":"Journal of Manufacturing Systems"},{"issue":"9","key":"10.1016\/j.eswa.2023.121136_b0160","doi-asserted-by":"crossref","first-page":"1712","DOI":"10.1049\/iet-epa.2020.0123","article-title":"Fault coil location of inter-turn short-circuit for direct-drive permanent magnet synchronous motor using knowledge graph","volume":"14","author":"Lv","year":"2020","journal-title":"IET Electric Power Applications (Wiley-Blackwell)"},{"issue":"4","key":"10.1016\/j.eswa.2023.121136_b0165","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1145\/2757001.2757003","article-title":"The prot\u00e9g\u00e9 project: A look back and a look forward","volume":"1","author":"Musen","year":"2015","journal-title":"AI Matters"},{"key":"10.1016\/j.eswa.2023.121136_b0170","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.cirpj.2022.11.004","article-title":"Challenges in predictive maintenance \u2013 A review","volume":"40","author":"Nunes","year":"2023","journal-title":"CIRP Journal of Manufacturing Science and Technology"},{"key":"10.1016\/j.eswa.2023.121136_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2021.104552","article-title":"Artificial intelligence in prognostics and health management of engineering systems","volume":"108","author":"Ochella","year":"2022","journal-title":"ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE"},{"key":"10.1016\/j.eswa.2023.121136_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103627","article-title":"OCRA \u2013 An ontology for collaborative robotics and adaptation","volume":"138","author":"Olivares-Alarcos","year":"2022","journal-title":"Computers in Industry"},{"issue":"7","key":"10.1016\/j.eswa.2023.121136_b0185","doi-asserted-by":"crossref","DOI":"10.3390\/s18072110","article-title":"LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing Using LSTM Recurrent Neural Networks","volume":"18","author":"Park","year":"2018","journal-title":"SENSORS"},{"key":"10.1016\/j.eswa.2023.121136_b0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijinfomgt.2020.102089","article-title":"Efficient querying of multidimensional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores","volume":"54","author":"Ravat","year":"2020","journal-title":"INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT"},{"key":"10.1016\/j.eswa.2023.121136_b0195","first-page":"1","article-title":"An Industrial Multilevel Knowledge Graph-Based Local-Global Monitoring for Plant-Wide Processes","volume":"70","author":"Ren","year":"2021","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"10.1016\/j.eswa.2023.121136_b0200","doi-asserted-by":"crossref","first-page":"148764","DOI":"10.1109\/ACCESS.2019.2944974","article-title":"A Fault Diagnosis Method of Industrial Robot Rolling Bearing Based on Data Driven and Random Intuitive Fuzzy Decision","volume":"7","author":"Sun","year":"2019","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.eswa.2023.121136_b0205","doi-asserted-by":"crossref","first-page":"489","DOI":"10.5545\/sv-jme.2021.7284","article-title":"Fault Diagnosis of Rotation Vector Reducer for Industrial Robot Based on a Convolutional Neural Network","volume":"67","author":"Shuai","year":"2021","journal-title":"Strojniski Vestnik \/ Journal of Mechanical Engineering"},{"key":"10.1016\/j.eswa.2023.121136_b0210","first-page":"293","article-title":"Inheritance in Object-Oriented Knowledge Representation","volume":"Vol. 538","author":"Terletskyi","year":"2015"},{"issue":"12","key":"10.1016\/j.eswa.2023.121136_b0215","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1109\/TKDE.2017.2754499","article-title":"Knowledge Graph Embedding: A Survey of Approaches and Applications","volume":"29","author":"Wang","year":"2017","journal-title":"IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING"},{"issue":"4","key":"10.1016\/j.eswa.2023.121136_b0220","doi-asserted-by":"crossref","first-page":"1369","DOI":"10.1016\/j.eswa.2013.08.034","article-title":"Dynamic representation of fuzzy knowledge based on fuzzy petri net and genetic-particle swarm optimization","volume":"41","author":"Wang","year":"2014","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.121136_b0225","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.compind.2015.09.001","article-title":"Research on assembly quality adaptive control system for complex mechanical products assembly process under uncertainty","volume":"74","author":"Wang","year":"2015","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.121136_b0230","article-title":"Knowledge Graph Quality Management: A Comprehensive Survey","volume":"1\u20131","author":"Xue","year":"2022","journal-title":"IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING"},{"key":"10.1016\/j.eswa.2023.121136_b0235","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.109068","article-title":"Maintenance planning recommendation of complex industrial equipment based on knowledge graph and graph neural network","volume":"232","author":"Xia","year":"2023","journal-title":"Reliability Engineering & System Safety"},{"key":"10.1016\/j.eswa.2023.121136_b0240","doi-asserted-by":"crossref","unstructured":"Xia, L., Zheng, P., Li, X., Gao, Robert. X., & Wang, L. (2022). Toward cognitive predictive maintenance: A survey of graph-based approaches. Journal of Manufacturing Systems, 64, 107\u2013120. 10.1016\/j.jmsy.2022.06.002.","DOI":"10.1016\/j.jmsy.2022.06.002"},{"key":"10.1016\/j.eswa.2023.121136_b0245","doi-asserted-by":"crossref","unstructured":"Xiao, H., Zeng, H., Jiang, W., Zhou, Y., & Tu, X. (2021). HMM-TCN-based health assessment and state prediction for robot mechanical axis. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, n\/a(n\/a). 10.1002\/int.22621.","DOI":"10.1002\/int.22621"},{"key":"10.1016\/j.eswa.2023.121136_b0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2021.3126366","article-title":"Fault Detection of Harmonic Drive Using Multiscale Convolutional Neural Network","volume":"70","author":"Yang","year":"2021","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"10.1016\/j.eswa.2023.121136_b0255","article-title":"Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor","author":"Yun","year":"2021","journal-title":"Journal of Intelligent Manufacturing"},{"issue":"1","key":"10.1016\/j.eswa.2023.121136_b0260","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s12206-020-1202-4","article-title":"Remaining useful life prediction of planet bearings based on conditional deep recurrent generative adversarial network and action discovery","volume":"35","author":"Yu","year":"2021","journal-title":"JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY"},{"key":"10.1016\/j.eswa.2023.121136_b0265","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108545","article-title":"Fault prognosis of industrial robots in dynamic working regimes: Find degradation in variations","volume":"173","author":"Yang","year":"2021","journal-title":"Measurement"},{"issue":"6","key":"10.1016\/j.eswa.2023.121136_b0270","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.1016\/j.eng.2019.10.005","article-title":"A Data and Knowledge Collaboration Strategy for Decision-Making on the Amount of Aluminum Fluoride Addition Based on Augmented Fuzzy Cognitive Maps","volume":"5","author":"Yue","year":"2019","journal-title":"Engineering"},{"key":"10.1016\/j.eswa.2023.121136_b0275","article-title":"A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models","author":"Yao","year":"2022","journal-title":"JOURNAL OF INTELLIGENT MANUFACTURING"},{"issue":"5","key":"10.1016\/j.eswa.2023.121136_b0280","doi-asserted-by":"crossref","first-page":"4404","DOI":"10.1109\/TIE.2020.2984443","article-title":"Deep Learning With Spatiotemporal Attention-Based LSTM for Industrial Soft Sensor Model Development","volume":"68","author":"Yuan","year":"2021","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"10","key":"10.1016\/j.eswa.2023.121136_b0285","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1016\/j.conengprac.2012.02.006","article-title":"Iterative learning belief rule-base inference methodology using evidential reasoning for delayed coking unit","volume":"20","author":"Yu","year":"2012","journal-title":"Control Engineering Practice"},{"key":"10.1016\/j.eswa.2023.121136_b0290","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119098","article-title":"CMDGAT: Knowledge extraction and retention based continual graph attention network for point cloud registration","volume":"214","author":"Zaman","year":"2023","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2023.121136_b0295","doi-asserted-by":"crossref","first-page":"842","DOI":"10.1109\/TCST.2016.2576018","article-title":"Critical-to-Fault-Degradation Variable Analysis and Direction Extraction for Online Fault Prognostic","volume":"25","author":"Zhao","year":"2017","journal-title":"IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY"},{"key":"10.1016\/j.eswa.2023.121136_b0300","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2023.101920","article-title":"An exploratory architecture using data and knowledge to close the loop between design and Maintenance from a product quality perspective","volume":"56","author":"Zhang","year":"2023","journal-title":"Advanced Engineering Informatics"},{"issue":"2","key":"10.1016\/j.eswa.2023.121136_b0305","doi-asserted-by":"crossref","first-page":"330","DOI":"10.1109\/JAS.2019.1911804","article-title":"Data-driven based fault prognosis for industrial systems: A concise overview","volume":"7","author":"Zhong","year":"2020","journal-title":"IEEE\/CAA Journal of Automatica Sinica"},{"key":"10.1016\/j.eswa.2023.121136_b0310","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107622","article-title":"A model-based reinforcement learning approach for maintenance optimization of degrading systems in a large state space","volume":"161","author":"Zhang","year":"2021","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.eswa.2023.121136_b0315","article-title":"A novel data-driven method based on sample reliability assessment and improved CNN for machinery fault diagnosis with non-ideal data","author":"Zhang","year":"2022","journal-title":"JOURNAL OF INTELLIGENT MANUFACTURING"},{"issue":"6","key":"10.1016\/j.eswa.2023.121136_b0320","doi-asserted-by":"crossref","first-page":"4215","DOI":"10.1109\/TII.2021.3133885","article-title":"End-to-End Transmission Control for Cross-Regional Industrial Internet of Things in Industry 5.0","volume":"18","author":"Zong","year":"2022","journal-title":"IEEE Transactions on Industrial Informatics"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742301638X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742301638X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T20:06:24Z","timestamp":1698869184000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741742301638X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":64,"alternative-id":["S095741742301638X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.121136","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Data-driven and Knowledge-based predictive maintenance method for industrial robots for the production stability of intelligent manufacturing","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.121136","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"121136"}}