{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,23]],"date-time":"2024-08-23T06:41:55Z","timestamp":1724395315989},"reference-count":70,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.eswa.2023.120959","type":"journal-article","created":{"date-parts":[[2023,7,11]],"date-time":"2023-07-11T15:44:49Z","timestamp":1689090289000},"page":"120959","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Intelligent approach for the industrialization of deep learning solutions applied to fault detection"],"prefix":"10.1016","volume":"233","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2796-9885","authenticated-orcid":false,"given":"Ivo","family":"Perez Colo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9883-4369","authenticated-orcid":false,"given":"Carolina","family":"Saavedra Sueldo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7582-9188","authenticated-orcid":false,"given":"Mariano","family":"De Paula","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3295-1604","authenticated-orcid":false,"given":"Gerardo G.","family":"Acosta","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.120959_b1","first-page":"S184","article-title":"A mini-review of artificial intelligence techniques for predicting the performance of supercapacitors","volume":"62","author":"Adekoya","year":"2022","journal-title":"Materials Today: Proceedings"},{"key":"10.1016\/j.eswa.2023.120959_b2","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.jmsy.2022.06.011","article-title":"Deep learning methods for object detection in smart manufacturing: A survey","volume":"64","author":"Ahmad","year":"2022","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.eswa.2023.120959_b3","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.solener.2020.01.055","article-title":"Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning","volume":"198","author":"Akram","year":"2020","journal-title":"Solar Energy"},{"key":"10.1016\/j.eswa.2023.120959_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108512","article-title":"Real-time deep learning method for automated detection and localization of structural defects in manufactured products","author":"Avola","year":"2022","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.eswa.2023.120959_b5","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.procir.2022.10.068","article-title":"Deep object detection framework for automated quality inspection in assembly operations","volume":"115","author":"Basamakis","year":"2022","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.eswa.2023.120959_b6","series-title":"Advances in neural information processing systems, vol. 24","article-title":"Algorithms for hyper-parameter optimization","author":"Bergstra","year":"2011"},{"key":"10.1016\/j.eswa.2023.120959_b7","series-title":"A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. CoRR","author":"Brochu","year":"2010"},{"key":"10.1016\/j.eswa.2023.120959_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108659","article-title":"A conceptual framework for smart production planning and control in industry 4.0","volume":"173","author":"Ca\u00f1as","year":"2022","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.eswa.2023.120959_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114195","article-title":"A state-of-the-art review on mobile robotics tasks using artificial intelligence and visual data","volume":"167","author":"Cebollada","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120959_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2021.103551","article-title":"Improved faster R-CNN for fabric defect detection based on gabor filter with genetic algorithm optimization","volume":"134","author":"Chen","year":"2022","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.120959_b11","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.jmsy.2021.12.002","article-title":"Intelligent tool wear monitoring and multi-step prediction based on deep learning model","volume":"62","author":"Cheng","year":"2022","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.eswa.2023.120959_b12","series-title":"Simulai","author":"Colo","year":"2020"},{"key":"10.1016\/j.eswa.2023.120959_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.est.2022.105552","article-title":"Diagnosis of connection fault for parallel-connected lithium-ion batteries based on long short-term memory networks","volume":"55","author":"Ding","year":"2022","journal-title":"Journal of Energy Storage"},{"key":"10.1016\/j.eswa.2023.120959_b14","article-title":"An intelligent cocoa quality testing framework based on deep learning techniques","author":"Essah","year":"2022","journal-title":"Measurement: Sensors"},{"issue":"4","key":"10.1016\/j.eswa.2023.120959_b15","doi-asserted-by":"crossref","first-page":"500","DOI":"10.14743\/apem2021.4.416","article-title":"Impact of industry 4.0 on decision-making in an operational context","volume":"16","author":"Frederic","year":"2021","journal-title":"Advances in Production Engineering & Management"},{"issue":"1","key":"10.1016\/j.eswa.2023.120959_b16","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ifacol.2021.08.014","article-title":"Expert system for the machine learning pipeline in manufacturing","volume":"54","author":"Frye","year":"2021","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.eswa.2023.120959_b17","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1016\/j.procs.2021.12.282","article-title":"Smart manufacturing applications for inspection and quality assurance processes","volume":"198","author":"Galindo-Salcedo","year":"2022","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.eswa.2023.120959_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107413","article-title":"A novel weak fault diagnosis method for rolling bearings based on LSTM considering quasi-periodicity","volume":"231","author":"Gao","year":"2021","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2023.120959_b19","series-title":"1999 Ninth international conference on artificial neural networks ICANN 99. (Conf. publ. no. 470), vol. 2","first-page":"850","article-title":"Learning to forget: continual prediction with LSTM","author":"Gers","year":"1999"},{"key":"10.1016\/j.eswa.2023.120959_b20","series-title":"Deep learning","author":"Goodfellow","year":"2016"},{"issue":"5","key":"10.1016\/j.eswa.2023.120959_b21","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1016\/j.neunet.2005.06.042","article-title":"Framewise phoneme classification with bidirectional LSTM and other neural network architectures","volume":"18","author":"Graves","year":"2005","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2023.120959_b22","article-title":"LSTM: A search space odyssey","volume":"28","author":"Greff","year":"2015","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"2","key":"10.1016\/j.eswa.2023.120959_b23","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.ifacol.2022.04.187","article-title":"Towards synchronization-oriented manufacturing planning and control for industry 4.0 and beyond","volume":"55","author":"Guo","year":"2022","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.eswa.2023.120959_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.imu.2021.100596","article-title":"AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends, guidelines on CAD systems for medicine","volume":"24","author":"Habuza","year":"2021","journal-title":"Informatics in Medicine Unlocked"},{"issue":"8","key":"10.1016\/j.eswa.2023.120959_b25","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2023.120959_b26","series-title":"Learning and intelligent optimization","first-page":"507","article-title":"Sequential model-based optimization for general algorithm configuration","author":"Hutter","year":"2011"},{"key":"10.1016\/j.eswa.2023.120959_b27","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.susoc.2022.01.008","article-title":"Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability","volume":"3","author":"Javaid","year":"2022","journal-title":"Sustainable Operations and Computers"},{"key":"10.1016\/j.eswa.2023.120959_b28","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1016\/j.neucom.2022.05.056","article-title":"A clustered blueprint separable convolutional neural network with high precision for high-speed train bogie fault diagnosis","volume":"500","author":"Jia","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.120959_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117398","article-title":"Product failure detection for production lines using a data-driven model","volume":"202","author":"Kang","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120959_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104959","article-title":"An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network","volume":"113","author":"Korkmaz","year":"2022","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"10.1016\/j.eswa.2023.120959_b31","doi-asserted-by":"crossref","first-page":"2375","DOI":"10.1016\/j.procs.2021.09.006","article-title":"Determinants of the decision-making process in organizations","volume":"192","author":"Kozio\u0142-Nadolna","year":"2021","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.eswa.2023.120959_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103779","article-title":"Deep learning based system for garment visual degradation prediction for longevity","volume":"144","author":"Kumar","year":"2023","journal-title":"Computers in Industry"},{"key":"10.1016\/j.eswa.2023.120959_b33","first-page":"1188","article-title":"Lean manufacturing techniques and its implementation: A review","volume":"64","author":"Kumar","year":"2022","journal-title":"Materials Today: Proceedings"},{"key":"10.1016\/j.eswa.2023.120959_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.jisa.2021.102804","article-title":"Attack classification of an intrusion detection system using deep learning and hyperparameter optimization","volume":"58","author":"Kunang","year":"2021","journal-title":"Journal of Information Security and Applications"},{"key":"10.1016\/j.eswa.2023.120959_b35","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2023.120959_b36","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.neucom.2022.06.080","article-title":"A novel self-supervised deep LSTM network for industrial temperature prediction in aluminum processes application","volume":"502","author":"Lei","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.120959_b37","series-title":"Massively parallel hyperparameter tuning","author":"Li","year":"2018"},{"issue":"11","key":"10.1016\/j.eswa.2023.120959_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.isci.2021.103317","article-title":"Comparison of deep learning systems and cornea specialists in detecting corneal diseases from low-quality images","volume":"24","author":"Li","year":"2021","journal-title":"iScience"},{"key":"10.1016\/j.eswa.2023.120959_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117716","article-title":"A novel intelligent fault diagnosis method of rotating machinery based on signal-to-image mapping and deep gabor convolutional adaptive pooling network","volume":"205","author":"Li","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120959_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102470","article-title":"Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing","volume":"80","author":"Li","year":"2023","journal-title":"Robotics and Computer-Integrated Manufacturing"},{"key":"10.1016\/j.eswa.2023.120959_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.110826","article-title":"Fault diagnosis of rotating machinery based on combination of wasserstein generative adversarial networks and long short term memory fully convolutional network","volume":"191","author":"Li","year":"2022","journal-title":"Measurement"},{"key":"10.1016\/j.eswa.2023.120959_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107646","article-title":"Fault prediction of bearings based on LSTM and statistical process analysis","volume":"214","author":"Liu","year":"2021","journal-title":"Reliability Engineering & System Safety"},{"key":"10.1016\/j.eswa.2023.120959_b43","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.ymssp.2018.02.016","article-title":"Artificial intelligence for fault diagnosis of rotating machinery: A review","volume":"108","author":"Liu","year":"2018","journal-title":"Mechanical Systems and Signal Processing"},{"key":"10.1016\/j.eswa.2023.120959_b44","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2022.102431","article-title":"Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites","volume":"79","author":"Lu","year":"2023","journal-title":"Robotics and Computer-Integrated Manufacturing"},{"key":"10.1016\/j.eswa.2023.120959_b45","series-title":"High precision medicine bottles vision online inspection system and classification based on multi-features and ensemble learning via independence test","author":"Ma","year":"2021"},{"key":"10.1016\/j.eswa.2023.120959_b46","first-page":"1","article-title":"High-precision medicine bottles vision online inspection system and classification based on multifeatures and ensemble learning via independence test","volume":"70","author":"Ma","year":"2021","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"10.1016\/j.eswa.2023.120959_b47","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1016\/j.jmsy.2021.01.012","article-title":"Real-time defect identification of narrow overlap welds and application based on convolutional neural networks","volume":"62","author":"Miao","year":"2022","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.eswa.2023.120959_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2022.109554","article-title":"Multi-heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robot","volume":"129","author":"Miao","year":"2022","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2023.120959_b49","first-page":"475","article-title":"Role of smart manufacturing in industry 4.0","volume":"63","author":"Namjoshi","year":"2022","journal-title":"Materials Today: Proceedings"},{"key":"10.1016\/j.eswa.2023.120959_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2022.110369","article-title":"Reliable quality assurance of X-ray mammography scanner by evaluation the standard mammography phantom image using an interpretable deep learning model","volume":"154","author":"Oh","year":"2022","journal-title":"European Journal of Radiology"},{"key":"10.1016\/j.eswa.2023.120959_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116868","article-title":"Intelligent rubbing fault identification using multivariate signals and a multivariate one-dimensional convolutional neural network","volume":"198","author":"Prosvirin","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120959_b52","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2021.120309","article-title":"Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method","volume":"227","author":"Qu","year":"2021","journal-title":"Energy"},{"key":"10.1016\/j.eswa.2023.120959_b53","series-title":"Gaussian processes for machine learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.eswa.2023.120959_b54","series-title":"System reliability theory: Models, statistical methods, and applications","author":"Rausand","year":"2020"},{"key":"10.1016\/j.eswa.2023.120959_b55","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2021.103531","article-title":"Maintenance concepts evolution: a comparative review towards advanced maintenance conceptualization","volume":"133","author":"Roda","year":"2021","journal-title":"Computers in Industry"},{"issue":"10","key":"10.1016\/j.eswa.2023.120959_b56","doi-asserted-by":"crossref","first-page":"690","DOI":"10.1016\/j.ifacol.2022.09.486","article-title":"Towards a comprehensive visual quality inspection for industry 4.0*","volume":"55","author":"Ro\u017eanec","year":"2022","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.eswa.2023.120959_b57","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1016\/j.procir.2022.05.031","article-title":"Explainable predictive quality inspection using deep learning in electronics manufacturing","volume":"107","author":"Saadallah","year":"2022","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.eswa.2023.120959_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijfatigue.2021.106580","article-title":"Artificial intelligence assisted fatigue failure prediction","volume":"155","author":"Schneller","year":"2022","journal-title":"International Journal of Fatigue"},{"key":"10.1016\/j.eswa.2023.120959_b59","doi-asserted-by":"crossref","DOI":"10.1016\/j.aime.2022.100072","article-title":"Convolutional neural network applications in additive manufacturing: A review","volume":"4","author":"Valizadeh","year":"2022","journal-title":"Advances in Industrial and Manufacturing Engineering"},{"key":"10.1016\/j.eswa.2023.120959_b60","doi-asserted-by":"crossref","DOI":"10.1016\/j.ailsci.2023.100057","article-title":"Application of AI techniques and robotics in agriculture: A review","volume":"3","author":"Wakchaure","year":"2023","journal-title":"Artificial Intelligence in the Life Sciences"},{"key":"10.1016\/j.eswa.2023.120959_b61","doi-asserted-by":"crossref","DOI":"10.1016\/j.resconrec.2022.106813","article-title":"Applications of convolutional neural networks for intelligent waste identification and recycling: A review","volume":"190","author":"Wu","year":"2023","journal-title":"Resources, Conservation and Recycling"},{"key":"10.1016\/j.eswa.2023.120959_b62","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfailanal.2021.105385","article-title":"LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems","volume":"125","author":"Xia","year":"2021","journal-title":"Engineering Failure Analysis"},{"key":"10.1016\/j.eswa.2023.120959_b63","series-title":"Production machine learning pipelines: Empirical analysis and optimization opportunities","author":"Xin","year":"2021"},{"key":"10.1016\/j.eswa.2023.120959_b64","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1016\/j.jmapro.2021.12.030","article-title":"Using convolutional neural networks to classify melt pools in a pulsed selective laser melting process","volume":"74","author":"Xing","year":"2022","journal-title":"Journal of Manufacturing Processes"},{"key":"10.1016\/j.eswa.2023.120959_b65","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2021.120971","article-title":"Technology mining: Artificial intelligence in manufacturing","volume":"171","author":"Zeba","year":"2021","journal-title":"Technological Forecasting and Social Change"},{"key":"10.1016\/j.eswa.2023.120959_b66","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2022.107871","article-title":"Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network","volume":"208","author":"Zhang","year":"2022","journal-title":"Electric Power Systems Research"},{"key":"10.1016\/j.eswa.2023.120959_b67","doi-asserted-by":"crossref","DOI":"10.1016\/j.ces.2022.117467","article-title":"Semi-supervised LSTM ladder autoencoder for chemical process fault diagnosis and localization","volume":"251","author":"Zhang","year":"2022","journal-title":"Chemical Engineering Science"},{"key":"10.1016\/j.eswa.2023.120959_b68","doi-asserted-by":"crossref","first-page":"835","DOI":"10.1016\/j.jmsy.2021.07.002","article-title":"Hybrid sparse convolutional neural networks for predicting manufacturability of visual defects of laser powder bed fusion processes","volume":"62","author":"Zhang","year":"2022","journal-title":"Journal of Manufacturing Systems"},{"key":"10.1016\/j.eswa.2023.120959_b69","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108119","article-title":"Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice","volume":"218","author":"Zio","year":"2022","journal-title":"Reliability Engineering & System Safety"},{"key":"10.1016\/j.eswa.2023.120959_b70","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2022.108085","article-title":"Double convolutional neural network for fault identification of power distribution network","volume":"210","author":"Zou","year":"2022","journal-title":"Electric Power Systems Research"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423014616?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423014616?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,9]],"date-time":"2023-12-09T19:18:33Z","timestamp":1702149513000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423014616"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":70,"alternative-id":["S0957417423014616"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120959","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Intelligent approach for the industrialization of deep learning solutions applied to fault detection","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120959","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"120959"}}