{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:31:20Z","timestamp":1720315880509},"reference-count":86,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.eswa.2023.120439","type":"journal-article","created":{"date-parts":[[2023,5,11]],"date-time":"2023-05-11T01:49:07Z","timestamp":1683769747000},"page":"120439","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"PA","title":["GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions"],"prefix":"10.1016","volume":"229","author":[{"given":"Gancheng","family":"Zhu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2943-2221","authenticated-orcid":false,"given":"Yusi","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Annebella","family":"Tsz Ho Choi","sequence":"additional","affiliation":[]},{"given":"Zhikang","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Yiruo","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Kewei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Siyang","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Changfan","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Hongmei","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Gongyou","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhaomin","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Yaqi","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Lan","family":"Huang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8108-6007","authenticated-orcid":false,"given":"Fengfeng","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.120439_b0005","article-title":"The Ensembl gene annotation system","author":"Aken","year":"2016","journal-title":"Database-the Journal of Biological Databases and Curation"},{"key":"10.1016\/j.eswa.2023.120439_b0010","doi-asserted-by":"crossref","DOI":"10.1186\/1471-2105-9-414","article-title":"Pol II promoter prediction using characteristic 4-mer motifs: A machine learning approach","volume":"9","author":"Anwar","year":"2008","journal-title":"BMC Bioinformatics"},{"issue":"22","key":"10.1016\/j.eswa.2023.120439_b0015","doi-asserted-by":"crossref","first-page":"4577","DOI":"10.1093\/bioinformatics\/btz283","article-title":"DeepPASTA: Deep neural network based polyadenylation site analysis","volume":"35","author":"Arefeen","year":"2019","journal-title":"Bioinformatics"},{"issue":"10","key":"10.1016\/j.eswa.2023.120439_b0020","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1038\/s41592-021-01252-x","article-title":"Effective gene expression prediction from sequence by integrating long-range interactions","volume":"18","author":"Avsec","year":"2021","journal-title":"Nature Methods"},{"issue":"22","key":"10.1016\/j.eswa.2023.120439_b0025","doi-asserted-by":"crossref","first-page":"3889","DOI":"10.1093\/bioinformatics\/bty418","article-title":"LncRNAnet: Long non-coding RNA identification using deep learning","volume":"34","author":"Baek","year":"2018","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0030","doi-asserted-by":"crossref","DOI":"10.1186\/1471-2105-7-S5-S15","article-title":"Splice site identification using probabilistic parameters and SVM classification","volume":"7","author":"Baten","year":"2006","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0035","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"10.1016\/j.eswa.2023.120439_b0040","doi-asserted-by":"crossref","first-page":"91-+","DOI":"10.1016\/j.cell.2019.04.046","article-title":"A deep neural network for predicting and engineering alternative polyadenylation","volume":"178","author":"Bogard","year":"2019","journal-title":"Cell"},{"key":"10.1016\/j.eswa.2023.120439_b0045","unstructured":"Chen, J., Tam, D., Raffel, C., Bansal, M., & Yang, D. (2021). An empirical survey of data augmentation for limited data learning in NLP. arXiv preprint arXiv:2106.07499."},{"key":"10.1016\/j.eswa.2023.120439_b0050","doi-asserted-by":"crossref","unstructured":"Chen, L., Ruan, W., Liu, X., & Lu, J. (2020). SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling. Paper presented at the Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online.","DOI":"10.18653\/v1\/2020.acl-main.777"},{"key":"10.1016\/j.eswa.2023.120439_b0055","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.ab.2014.06.022","article-title":"iTIS-PseTNC: A sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition","volume":"462","author":"Chen","year":"2014","journal-title":"Analytical Biochemistry"},{"key":"10.1016\/j.eswa.2023.120439_b0060","unstructured":"Cui, Z., Chen, W., & Chen, Y. (2016). Multi-scale convolutional neural networks for time series classification. arXiv preprint arXiv:1603.06995."},{"issue":"12","key":"10.1016\/j.eswa.2023.120439_b0065","doi-asserted-by":"crossref","first-page":"2015","DOI":"10.1101\/gr.224964.117","article-title":"Deep learning of the regulatory grammar of yeast 5 ' untranslated regions from 500,000 random sequences","volume":"27","author":"Cuperus","year":"2017","journal-title":"Genome Research"},{"key":"10.1016\/j.eswa.2023.120439_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2021.103957","article-title":"Class imbalance in out-of-distribution datasets: Improving the robustness of the TextCNN for the classification of rare cancer types","volume":"125","author":"De Angeli","year":"2022","journal-title":"Journal of Biomedical Informatics"},{"issue":"6","key":"10.1016\/j.eswa.2023.120439_b0075","doi-asserted-by":"crossref","first-page":"2697","DOI":"10.1021\/acs.jcim.0c01489","article-title":"XGraphBoost: Extracting graph neural network-based features for a better prediction of molecular properties","volume":"61","author":"Deng","year":"2021","journal-title":"Journal of Chemical Information and Modeling"},{"key":"10.1016\/j.eswa.2023.120439_b0080","unstructured":"Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805."},{"key":"10.1016\/j.eswa.2023.120439_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiolchem.2020.107379","article-title":"DeepAdd: Protein function prediction from k-mer embedding and additional features","volume":"89","author":"Du","year":"2020","journal-title":"Computational Biology and Chemistry"},{"issue":"10","key":"10.1016\/j.eswa.2023.120439_b0090","doi-asserted-by":"crossref","first-page":"7112","DOI":"10.1109\/TPAMI.2021.3095381","article-title":"ProtTrans: Toward understanding the language of life through self-supervised learning","volume":"44","author":"Elnaggar","year":"2022","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"8","key":"10.1016\/j.eswa.2023.120439_b0095","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.tibtech.2010.05.006","article-title":"From complete genome sequence to 'complete' understanding?","volume":"28","author":"Galperin","year":"2010","journal-title":"Trends in Biotechnology"},{"key":"10.1016\/j.eswa.2023.120439_b0100","doi-asserted-by":"crossref","first-page":"24340","DOI":"10.1109\/ACCESS.2018.2825996","article-title":"DeepPolyA: A Convolutional Neural Network Approach for Polyadenylation Site Prediction","volume":"6","author":"Gao","year":"2018","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.eswa.2023.120439_b0105","doi-asserted-by":"crossref","DOI":"10.1093\/nar\/gks877","article-title":"Noncoder: A web interface for exon array-based detection of long non-coding RNAs","volume":"41","author":"Gellert","year":"2013","journal-title":"Nucleic Acids Research"},{"key":"10.1016\/j.eswa.2023.120439_b0110","doi-asserted-by":"crossref","DOI":"10.1038\/ncomms6700","article-title":"microTSS: Accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs","volume":"5","author":"Georgakilas","year":"2014","journal-title":"Nature Communications"},{"issue":"D1","key":"10.1016\/j.eswa.2023.120439_b0115","doi-asserted-by":"crossref","first-page":"D663","DOI":"10.1093\/nar\/gkw1016","article-title":"FlyBase at 25: Looking to the future","volume":"45","author":"Gramates","year":"2017","journal-title":"Nucleic Acids Research"},{"key":"10.1016\/j.eswa.2023.120439_b0120","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.neunet.2022.04.025","article-title":"Context-aware dynamic neural computational models for accurate Poly(A) signal prediction","volume":"152","author":"Guo","year":"2022","journal-title":"Neural Networks"},{"key":"10.1016\/j.eswa.2023.120439_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107783","article-title":"Gated residual neural networks with self-normalization for translation initiation site recognition","volume":"237","author":"Guo","year":"2022","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2023.120439_b0130","article-title":"Context-aware poly(A) signal prediction model via deep spatial-temporal neural networks","author":"Guo","year":"2022","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2023.120439_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118004","article-title":"Deep multi-scale Gaussian residual networks for contextual-aware translation initiation site recognition","volume":"207","author":"Guo","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120439_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107133","article-title":"Identifying polyadenylation signals with biological embedding via self-attentive gated convolutional highway networks","volume":"103","author":"Guo","year":"2021","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2023.120439_b0145","unstructured":"Hartwell, L. H., Hood, L., Goldberg, M. L., Reynolds, A. E., & Silver, L. M. (2011). Genetics: from genes to genomes: McGraw-Hill."},{"key":"10.1016\/j.eswa.2023.120439_b0150","first-page":"389","article-title":"Artificial neural networks based systems for recognition of genomic signals and regions: A review","volume":"26","author":"Hatzigeorgiou","year":"2002","journal-title":"Informatica"},{"issue":"2","key":"10.1016\/j.eswa.2023.120439_b0155","doi-asserted-by":"crossref","first-page":"1847","DOI":"10.1016\/j.ygeno.2019.10.018","article-title":"Splice sites detection using chaos game representation and neural network","volume":"112","author":"Hoang","year":"2020","journal-title":"Genomics"},{"issue":"15","key":"10.1016\/j.eswa.2023.120439_b0160","doi-asserted-by":"crossref","first-page":"2112","DOI":"10.1093\/bioinformatics\/btab083","article-title":"DNABERT: Pre-trained bidirectional encoder representations from transformers model for DNA-language in genome","volume":"37","author":"Ji","year":"2021","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0165","unstructured":"Ju, Y., Zhao, F., Chen, S., Zheng, B., Yang, X., & Liu, Y. (2019). Technical report on conversational question answering. arXiv preprint arXiv:1909.10772."},{"issue":"7","key":"10.1016\/j.eswa.2023.120439_b0170","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1093\/bioinformatics\/bty752","article-title":"DeepGSR: An optimized deep-learning structure for the recognition of genomic signals and regions","volume":"35","author":"Kalkatawi","year":"2019","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.eswa.2023.120439_b0175","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1093\/bioinformatics\/btr602","article-title":"Dragon PolyA Spotter: Predictor of poly(A) motifs within human genomic DNA sequences","volume":"28","author":"Kalkatawi","year":"2012","journal-title":"Bioinformatics"},{"issue":"6","key":"10.1016\/j.eswa.2023.120439_b0180","doi-asserted-by":"crossref","first-page":"2266","DOI":"10.1016\/j.patcog.2011.11.020","article-title":"An online AUC formulation for binary classification","volume":"45","author":"Kim","year":"2012","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2023.120439_b0185","doi-asserted-by":"crossref","first-page":"92974","DOI":"10.1109\/ACCESS.2021.3093456","article-title":"Attention meets perturbations: robust and interpretable attention with adversarial training","volume":"9","author":"Kitada","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.120439_b0190","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.gene.2005.06.037","article-title":"Regulation of translation via mRNA structure in prokaryotes and eukaryotes","volume":"361","author":"Kozak","year":"2005","journal-title":"Gene"},{"key":"10.1016\/j.eswa.2023.120439_b0195","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.omtn.2019.05.028","article-title":"iProEP: A computational predictor for predicting promoter","volume":"17","author":"Lai","year":"2019","journal-title":"Molecular Therapy-Nucleic Acids"},{"issue":"8","key":"10.1016\/j.eswa.2023.120439_b0200","doi-asserted-by":"crossref","DOI":"10.1007\/s10916-018-1003-9","article-title":"A Survey of Data Mining and Deep Learning in Bioinformatics","volume":"42","author":"Lan","year":"2018","journal-title":"Journal of Medical Systems"},{"issue":"7553","key":"10.1016\/j.eswa.2023.120439_b0205","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"2","key":"10.1016\/j.eswa.2023.120439_b0210","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/S1672-0229(05)03012-3","article-title":"Feature selection for the prediction of translation initiation sites","volume":"3","author":"Li","year":"2005","journal-title":"Genomics, Proteomics & Bioinformatics"},{"issue":"6","key":"10.1016\/j.eswa.2023.120439_b0215","doi-asserted-by":"crossref","first-page":"2842","DOI":"10.1016\/j.eswa.2013.10.019","article-title":"Asynchronism-based principal component analysis for time series data mining","volume":"41","author":"Li","year":"2014","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120439_b0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109234","article-title":"Learning spatiotemporal embedding with gated convolutional recurrent networks for translation initiation site prediction","volume":"136","author":"Li","year":"2023","journal-title":"Pattern Recognition"},{"issue":"20","key":"10.1016\/j.eswa.2023.120439_b0225","doi-asserted-by":"crossref","first-page":"11193","DOI":"10.1073\/pnas.201407298","article-title":"A computational analysis of sequence features involved in recognition of short introns","volume":"98","author":"Lim","year":"2001","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"key":"10.1016\/j.eswa.2023.120439_b0230","first-page":"84","article-title":"An in-silico method for prediction of polyadenylation signals in human sequences","volume":"14","author":"Liu","year":"2003","journal-title":"Genome Informatics"},{"issue":"17","key":"10.1016\/j.eswa.2023.120439_b0235","doi-asserted-by":"crossref","first-page":"4053","DOI":"10.1093\/bioinformatics\/btac454","article-title":"DeepGenGrep: A general deep learning-based predictor for multiple genomic signals and regions","volume":"38","author":"Liu","year":"2022","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0240","unstructured":"Liu, X., Cheng, H., He, P., Chen, W., Wang, Y., Poon, H., & Gao, J. (2020). Adversarial training for large neural language models. arXiv preprint arXiv:2004.08994."},{"issue":"1","key":"10.1016\/j.eswa.2023.120439_b0245","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1093\/bioinformatics\/bts638","article-title":"Dragon TIS Spotter: An Arabidopsis-derived predictor of translation initiation sites in plants","volume":"29","author":"Magana-Mora","year":"2013","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0250","doi-asserted-by":"crossref","DOI":"10.1186\/s12864-017-4033-7","article-title":"Omni-PolyA: A method and tool for accurate recognition of Poly(A) signals in human genomic","volume":"18","author":"Magana-Mora","year":"2017","journal-title":"BMC Genomics"},{"key":"10.1016\/j.eswa.2023.120439_b0255","doi-asserted-by":"crossref","unstructured":"McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.","DOI":"10.21105\/joss.00861"},{"issue":"3","key":"10.1016\/j.eswa.2023.120439_b0260","doi-asserted-by":"crossref","DOI":"10.1145\/3439726","article-title":"Deep learning-based text classification: A comprehensive review","volume":"54","author":"Minaee","year":"2022","journal-title":"ACM Computing Surveys"},{"key":"10.1016\/j.eswa.2023.120439_b0265","unstructured":"T. Miyato A.M. Dai I. Goodfellow Adversarial training methods for semi-supervised text classification 2017 Toulon, France."},{"issue":"35","key":"10.1016\/j.eswa.2023.120439_b0270","article-title":"Taxonomic classification of DNA sequences beyond sequence similarity using deep neural networks","volume":"119","author":"Mock","year":"2022","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"issue":"1","key":"10.1016\/j.eswa.2023.120439_b0275","doi-asserted-by":"crossref","DOI":"10.1186\/gb-2014-15-1-r19","article-title":"MutPred Splice: Machine learning-based prediction of exonic variants that disrupt splicing","volume":"15","author":"Mort","year":"2014","journal-title":"Genome Biology"},{"issue":"3","key":"10.1016\/j.eswa.2023.120439_b0280","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbaa045","article-title":"CodAn: Predictive models for precise identification of coding regions in eukaryotic transcripts","volume":"22","author":"Nachtigall","year":"2021","journal-title":"Briefings in Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0285","first-page":"5)","article-title":"iPromoter-Seqvec: Identifying promoters using bidirectional long short-term memory and sequence-embedded features","volume":"23(SUPPL","author":"Nguyen-Vo","year":"2022","journal-title":"BMC Genomics"},{"key":"10.1016\/j.eswa.2023.120439_b0290","series-title":"Paper presented at the Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)","article-title":"Glove: Global vectors for word representation","author":"Pennington","year":"2014"},{"key":"10.1016\/j.eswa.2023.120439_b0295","first-page":"1752","article-title":"Stochastic optimization of areas under precision-recall curves with provable convergence","volume":"34","author":"Qi","year":"2021","journal-title":"Advances in neural information processing systems"},{"key":"10.1016\/j.eswa.2023.120439_b0300","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: An overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Networks"},{"issue":"11","key":"10.1016\/j.eswa.2023.120439_b0305","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1109\/78.650093","article-title":"Bidirectional recurrent neural networks","volume":"45","author":"Schuster","year":"1997","journal-title":"IEEE Transactions on Signal Processing"},{"issue":"11","key":"10.1016\/j.eswa.2023.120439_b0310","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1093\/jamia\/ocz096","article-title":"Enhancing clinical concept extraction with contextual embeddings","volume":"26","author":"Si","year":"2019","journal-title":"Journal of the American Medical Informatics Association"},{"key":"10.1016\/j.eswa.2023.120439_b0315","series-title":"Computational Biology of Transcription Factor Binding","first-page":"57","article-title":"Identification of Promoter Regions and Regulatory Sites","author":"Solovyev","year":"2010"},{"issue":"4","key":"10.1016\/j.eswa.2023.120439_b0320","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1016\/j.cell.2009.01.042","article-title":"Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets","volume":"136","author":"Sonenberg","year":"2009","journal-title":"Cell"},{"key":"10.1016\/j.eswa.2023.120439_b0325","doi-asserted-by":"crossref","first-page":"W309","DOI":"10.1093\/nar\/gkh379","article-title":"AUGUSTUS: A web server for gene finding in eukaryotes","volume":"32","author":"Stanke","year":"2004","journal-title":"Nucleic Acids Research"},{"key":"10.1016\/j.eswa.2023.120439_b0330","doi-asserted-by":"crossref","unstructured":"M. Stanke S. Waack Gene prediction with a hidden Markov model and a new intron submodel Bioinformatics 19 2003 II215-II225 10.1093\/bioinformatics\/btg1080.","DOI":"10.1093\/bioinformatics\/btg1080"},{"issue":"5439","key":"10.1016\/j.eswa.2023.120439_b0335","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1126\/science.286.5439.455","article-title":"The mammalian gene collection","volume":"286","author":"Strausberg","year":"1999","journal-title":"Science"},{"key":"10.1016\/j.eswa.2023.120439_b0340","doi-asserted-by":"crossref","first-page":"4490154","DOI":"10.1155\/2022\/4490154","article-title":"A miRNA target prediction model based on distributed representation learning and deep learning","volume":"2022","author":"Sun","year":"2022","journal-title":"Computational and Mathematical Methods in Medicine"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2023.120439_b0345","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S0378-1119(99)00104-3","article-title":"Detection of polyadenylation signals in human DNA sequences","volume":"231","author":"Tabaska","year":"1999","journal-title":"Gene"},{"issue":"12","key":"10.1016\/j.eswa.2023.120439_b0350","doi-asserted-by":"crossref","first-page":"2324","DOI":"10.1101\/gr.095976.109","article-title":"The completion of the Mammalian Gene Collection (MGC)","volume":"19","author":"Temple","year":"2009","journal-title":"Genome Research"},{"key":"10.1016\/j.eswa.2023.120439_b0355","doi-asserted-by":"crossref","DOI":"10.1016\/j.cosrev.2021.100433","article-title":"Comprehensive analysis of embeddings and pre-training in NLP","volume":"42","author":"Tripathy","year":"2021","journal-title":"Computer Science Review"},{"key":"10.1016\/j.eswa.2023.120439_b0360","series-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"issue":"3","key":"10.1016\/j.eswa.2023.120439_b0365","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1093\/bib\/bbx164","article-title":"Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches","volume":"20","author":"Wang","year":"2019","journal-title":"Briefings in bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0370","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.jbi.2018.09.008","article-title":"A comparison of word embeddings for the biomedical natural language processing","volume":"87","author":"Wang","year":"2018","journal-title":"Journal of Biomedical Informatics"},{"issue":"2","key":"10.1016\/j.eswa.2023.120439_b0375","article-title":"A Machine Learning-Based Investigation of Gender-Specific Prognosis of Lung Cancers","volume":"57","author":"Wang","year":"2021","journal-title":"Medicina-Lithuania"},{"key":"10.1016\/j.eswa.2023.120439_b0380","article-title":"Towards a better understanding of TF-DNA binding prediction from genomic features","volume":"105993","author":"Wang","year":"2022","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2023.120439_b0385","doi-asserted-by":"crossref","DOI":"10.1016\/j.dsp.2021.103202","article-title":"DeepTIS: Improved translation initiation site prediction in genomic sequence via a two-stage deep learning model","volume":"117","author":"Wei","year":"2021","journal-title":"Digital Signal Processing"},{"key":"10.1016\/j.eswa.2023.120439_b0390","doi-asserted-by":"crossref","unstructured":"Wu, T. D., Reeder, J., Lawrence, M., Becker, G., & Brauer, M. J. (2016). GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality. In E. Mathe & S. Davis (Eds.), Statistical Genomics: Methods and Protocols (Vol. 1418, pp. 283-334).","DOI":"10.1007\/978-1-4939-3578-9_15"},{"issue":"14","key":"10.1016\/j.eswa.2023.120439_b0395","doi-asserted-by":"crossref","first-page":"2371","DOI":"10.1093\/bioinformatics\/bty991","article-title":"DeeReCT-PolyA: A robust and generic deep learning method for PAS identification","volume":"35","author":"Xia","year":"2019","journal-title":"Bioinformatics"},{"issue":"13","key":"10.1016\/j.eswa.2023.120439_b0400","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1093\/bioinformatics\/btt218","article-title":"Poly(A) motif prediction using spectral latent features from human DNA sequences","volume":"29","author":"Xie","year":"2013","journal-title":"Bioinformatics"},{"issue":"8","key":"10.1016\/j.eswa.2023.120439_b0405","doi-asserted-by":"crossref","first-page":"2393","DOI":"10.1093\/bioinformatics\/btz970","article-title":"SANPolyA: A deep learning method for identifying Poly(A) signals","volume":"36","author":"Yu","year":"2020","journal-title":"Bioinformatics"},{"issue":"14","key":"10.1016\/j.eswa.2023.120439_b0410","doi-asserted-by":"crossref","first-page":"I234","DOI":"10.1093\/bioinformatics\/btx247","article-title":"TITER: Predicting translation initiation sites by deep learning","volume":"33","author":"Zhang","year":"2017","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2023.120439_b0415","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117652","article-title":"A novel multi-scale CNNs for false positive reduction in pulmonary nodule detection","volume":"207","author":"Zhao","year":"2022","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2023.120439_b0420","doi-asserted-by":"crossref","first-page":"405-+","DOI":"10.1128\/MMBR.63.2.405-445.1999","article-title":"Formation of mRNA 3 ' ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis","volume":"63","author":"Zhao","year":"1999","journal-title":"Microbiology and Molecular Biology Reviews"},{"issue":"3","key":"10.1016\/j.eswa.2023.120439_b0425","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.eng.2019.12.014","article-title":"Progress in Neural NLP: Modeling, Learning, and Reasoning","volume":"6","author":"Zhou","year":"2020","journal-title":"Engineering"},{"key":"10.1016\/j.eswa.2023.120439_b0430","series-title":"Paper presented at the 8th International Conference on Learning Representations","article-title":"FreeLB: Enhanced Adversarial Training for Natural Language Understanding","author":"Zhu","year":"2020"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423009417?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423009417?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:44:56Z","timestamp":1714545896000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423009417"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":86,"alternative-id":["S0957417423009417"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120439","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GSRNet, an adversarial training-based deep framework with multi-scale CNN and BiGRU for predicting genomic signals and regions","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120439","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"120439"}}