{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:48:44Z","timestamp":1740116924905,"version":"3.37.3"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2016YFB1200402-020"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.eswa.2023.120284","type":"journal-article","created":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T16:13:57Z","timestamp":1683562437000},"page":"120284","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Anomaly-GAN: A data augmentation method for train surface anomaly detection"],"prefix":"10.1016","volume":"228","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-9828-5301","authenticated-orcid":false,"given":"Ruikang","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1819-9153","authenticated-orcid":false,"given":"Weiming","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6578-282X","authenticated-orcid":false,"given":"Zhongxing","family":"Zheng","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0655-3805","authenticated-orcid":false,"given":"Liang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1287-2191","authenticated-orcid":false,"given":"Liang","family":"Mao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2983-6437","authenticated-orcid":false,"given":"Qisheng","family":"Qiu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1338-4448","authenticated-orcid":false,"given":"Guangzheng","family":"Ling","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.eswa.2023.120284_b1","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1007\/s11263-020-01400-4","article-title":"The mvtec anomaly detection dataset: A comprehensive real-world dataset for unsupervised anomaly detection","volume":"129","author":"Bergmann","year":"2021","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.eswa.2023.120284_b2","article-title":"Infogan: Interpretable representation learning by information maximizing generative adversarial nets","volume":"29","author":"Chen","year":"2016","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.120284_b3","article-title":"A hybrid deep learning based framework for component defect detection of moving trains","author":"Chen","year":"2020","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2023.120284_b4","article-title":"A hybrid deep learning based framework for component defect detection of moving trains","author":"Chen","year":"2020","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2023.120284_b5","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neucom.2022.01.004","article-title":"Deep learning approach for defective spot welds classification using small and class-imbalanced datasets","volume":"477","author":"Dai","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.120284_b6","series-title":"2019 IEEE 31st international conference on tools with artificial intelligence","first-page":"149","article-title":"An end-to-end abnormal fastener detection method based on data synthesis","author":"Dong","year":"2019"},{"key":"10.1016\/j.eswa.2023.120284_b7","doi-asserted-by":"crossref","unstructured":"Fang, Y., Yang, S., Wang, X., Li, Y., Fang, C., Shan, Y., Feng, B., & Liu, W. (2021). Instances as queries. In Proceedings of the IEEE\/CVF International Conference on Computer Vision (pp. 6910\u20136919).","DOI":"10.1109\/ICCV48922.2021.00683"},{"issue":"11","key":"10.1016\/j.eswa.2023.120284_b8","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Communications of the ACM"},{"key":"10.1016\/j.eswa.2023.120284_b9","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961\u20132969).","DOI":"10.1109\/ICCV.2017.322"},{"key":"10.1016\/j.eswa.2023.120284_b10","doi-asserted-by":"crossref","first-page":"183838","DOI":"10.1109\/ACCESS.2019.2960439","article-title":"Detection of foreign matter on high-speed train underbody based on deep learning","volume":"7","author":"He","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.120284_b11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770\u2013778).","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.eswa.2023.120284_b12","article-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium","volume":"30","author":"Heusel","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.120284_b13","article-title":"Gans trained by a two time-scale update rule converge to a local nash equilibrium","volume":"30","author":"Heusel","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.120284_b14","doi-asserted-by":"crossref","unstructured":"Huang, Z., Huang, L., Gong, Y., Huang, C., & Wang, X. (2019). Mask scoring r-cnn. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 6409\u20136418).","DOI":"10.1109\/CVPR.2019.00657"},{"key":"10.1016\/j.eswa.2023.120284_b15","doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1125\u20131134).","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.eswa.2023.120284_b16","series-title":"Proceedings of 1995 IEEE international conference on fuzzy systems, Vol. 2","first-page":"749","article-title":"Data structure and retrieval method of scenic image database based on fuzzy set theory","author":"Isomoto","year":"1995"},{"issue":"8","key":"10.1016\/j.eswa.2023.120284_b17","doi-asserted-by":"crossref","first-page":"2679","DOI":"10.1109\/TIM.2018.2868490","article-title":"Deep architecture for high-speed railway insulator surface defect detection: Denoising autoencoder with multitask learning","volume":"68","author":"Kang","year":"2018","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"year":"2013","series-title":"Auto-encoding variational bayes","author":"Kingma","key":"10.1016\/j.eswa.2023.120284_b18"},{"year":"2019","series-title":"Augmentation for small object detection","author":"Kisantal","key":"10.1016\/j.eswa.2023.120284_b19"},{"key":"10.1016\/j.eswa.2023.120284_b20","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Doll\u00e1r, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980\u20132988).","DOI":"10.1109\/ICCV.2017.324"},{"key":"10.1016\/j.eswa.2023.120284_b21","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1016\/j.neucom.2019.05.080","article-title":"Defective samples simulation through adversarial training for automatic surface inspection","volume":"360","author":"Liu","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.120284_b22","article-title":"Four discriminator cycle-consistent adversarial network for improving railway defective fastener inspection","author":"Liu","year":"2021","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"year":"2017","series-title":"Decoupled weight decay regularization","author":"Loshchilov","key":"10.1016\/j.eswa.2023.120284_b23"},{"key":"10.1016\/j.eswa.2023.120284_b24","doi-asserted-by":"crossref","unstructured":"Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., & Paul Smolley, S. (2017). Least squares generative adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2794\u20132802).","DOI":"10.1109\/ICCV.2017.304"},{"year":"2014","series-title":"Conditional generative adversarial nets","author":"Mirza","key":"10.1016\/j.eswa.2023.120284_b25"},{"key":"10.1016\/j.eswa.2023.120284_b26","article-title":"Dual discriminator generative adversarial nets","volume":"30","author":"Nguyen","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"3","key":"10.1016\/j.eswa.2023.120284_b27","first-page":"1611","article-title":"Defect image sample generation with GAN for improving defect recognition","volume":"17","author":"Niu","year":"2020","journal-title":"IEEE Transactions on Automation Science and Engineering"},{"issue":"7","key":"10.1016\/j.eswa.2023.120284_b28","doi-asserted-by":"crossref","first-page":"4531","DOI":"10.1109\/TII.2021.3127188","article-title":"Region-and strength-controllable GAN for defect generation and segmentation in industrial images","volume":"18","author":"Niu","year":"2021","journal-title":"IEEE Transactions on Industrial Informatics"},{"year":"2018","series-title":"Yolov3: An incremental improvement","author":"Redmon","key":"10.1016\/j.eswa.2023.120284_b29"},{"key":"10.1016\/j.eswa.2023.120284_b30","series-title":"International conference on medical image computing and computer-assisted intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"1","key":"10.1016\/j.eswa.2023.120284_b31","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s11263-007-0090-8","article-title":"LabelMe: A database and web-based tool for image annotation","volume":"77","author":"Russell","year":"2008","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.eswa.2023.120284_b32","doi-asserted-by":"crossref","DOI":"10.1109\/TITS.2022.3207490","article-title":"Geometric constraint and image inpainting-based railway track fastener sample generation for improving defect inspection","author":"Su","year":"2022","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2023.120284_b33","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.jare.2021.03.015","article-title":"A review on modern defect detection models using DCNNs\u2013deep convolutional neural networks","volume":"35","author":"Tulbure","year":"2022","journal-title":"Journal of Advanced Research"},{"key":"10.1016\/j.eswa.2023.120284_b34","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"8798","article-title":"High-resolution image synthesis and semantic manipulation with conditional gans","author":"Wang","year":"2018"},{"key":"10.1016\/j.eswa.2023.120284_b35","series-title":"European conference on computer vision","first-page":"145","article-title":"Synthesize then compare: Detecting failures and anomalies for semantic segmentation","author":"Xia","year":"2020"},{"key":"10.1016\/j.eswa.2023.120284_b36","article-title":"Mask2Defect: A prior knowledge based data augmentation method for metal surface defect inspection","author":"Yang","year":"2021","journal-title":"IEEE Transactions on Industrial Informatics"},{"issue":"3","key":"10.1016\/j.eswa.2023.120284_b37","doi-asserted-by":"crossref","first-page":"1674","DOI":"10.1109\/TII.2021.3092372","article-title":"Multiple granularities generative adversarial network for recognition of wafer map defects","volume":"18","author":"Yu","year":"2021","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"10.1016\/j.eswa.2023.120284_b38","doi-asserted-by":"crossref","unstructured":"Zhang, R., Isola, P., Efros, A. A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 586\u2013595).","DOI":"10.1109\/CVPR.2018.00068"},{"key":"10.1016\/j.eswa.2023.120284_b39","series-title":"2021 IEEE 16th conference on industrial electronics and applications","first-page":"1394","article-title":"Fault diagnosis of train clamp based on faster R-CNN and one-class convolutional neural network","author":"Zhang","year":"2021"},{"key":"10.1016\/j.eswa.2023.120284_b40","article-title":"A novel MAS-GAN-based data synthesis method for object surface defect detection","author":"Zhang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.120284_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107571","article-title":"CADN: A weakly supervised learning-based category-aware object detection network for surface defect detection","volume":"109","author":"Zhang","year":"2021","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2023.120284_b42","first-page":"1","article-title":"MinimalGAN: diverse medical image synthesis for data augmentation using minimal training data","author":"Zhang","year":"2022","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2023.120284_b43","first-page":"1","article-title":"An effective framework using identification and image reconstruction algorithm for train component defect detection","author":"Zhang","year":"2022","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2023.120284_b44","doi-asserted-by":"crossref","first-page":"136808","DOI":"10.1109\/ACCESS.2020.3009654","article-title":"Defect detection method for electric multiple units key components based on deep learning","volume":"8","author":"Zhao","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2023.120284_b45","first-page":"1","article-title":"Defect detection on new samples with siamese defect-aware attention network","author":"Zheng","year":"2022","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2023.120284_b46","doi-asserted-by":"crossref","unstructured":"Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223\u20132232).","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423007868?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423007868?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,24]],"date-time":"2023-11-24T00:10:40Z","timestamp":1700784640000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423007868"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":46,"alternative-id":["S0957417423007868"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120284","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Anomaly-GAN: A data augmentation method for train surface anomaly detection","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120284","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"120284"}}