{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T07:19:28Z","timestamp":1725952768920},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.eswa.2023.120218","type":"journal-article","created":{"date-parts":[[2023,4,29]],"date-time":"2023-04-29T01:25:00Z","timestamp":1682731500000},"page":"120218","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["CoxNAM: An interpretable deep survival analysis model"],"prefix":"10.1016","volume":"227","author":[{"given":"Liangchen","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5155-1297","authenticated-orcid":false,"given":"Chonghui","family":"Guo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.120218_b1","first-page":"4699","article-title":"Neural additive models: Interpretable machine learning with neural nets","volume":"34","author":"Agarwal","year":"2021","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.120218_b2","series-title":"Statistical models based on counting processes","author":"Andersen","year":"2012"},{"issue":"29","key":"10.1016\/j.eswa.2023.120218_b3","doi-asserted-by":"crossref","first-page":"3946","DOI":"10.1002\/sim.5452","article-title":"Generating survival times to simulate cox proportional hazards models with time-varying covariates","volume":"31","author":"Austin","year":"2012","journal-title":"Statistics in Medicine"},{"key":"10.1016\/j.eswa.2023.120218_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117006","article-title":"An overview of deep learning methods for multimodal medical data mining","volume":"200","author":"Behrad","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120218_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116760","article-title":"Large scale prediction of sick leave duration with nonlinear survival analysis algorithms","volume":"198","author":"B\u00e9jar","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.120218_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.oraloncology.2021.105335","article-title":"An interpretable machine learning prognostic system for locoregionally advanced nasopharyngeal carcinoma based on tumor burden features","volume":"118","author":"Chen","year":"2021","journal-title":"Oral Oncology"},{"issue":"2","key":"10.1016\/j.eswa.2023.120218_b7","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1111\/j.2517-6161.1972.tb00899.x","article-title":"Regression models and life-tables","volume":"34","author":"Cox","year":"1972","journal-title":"Journal of the Royal Statistical Society. Series B. Statistical Methodology"},{"issue":"6","key":"10.1016\/j.eswa.2023.120218_b8","doi-asserted-by":"crossref","first-page":"699","DOI":"10.1016\/0021-9681(58)90126-7","article-title":"Maximum utilization of the life table method in analyzing survival","volume":"8","author":"Cutler","year":"1958","journal-title":"Journal of Chronic Diseases"},{"issue":"14","key":"10.1016\/j.eswa.2023.120218_b9","doi-asserted-by":"crossref","first-page":"11751","DOI":"10.1007\/s00521-022-07067-x","article-title":"Propension to customer churn in a financial institution: A machine learning approach","volume":"34","author":"de Lima Lemos","year":"2022","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.eswa.2023.120218_b10","article-title":"A two-stage machine learning framework to predict heart transplantation survival probabilities over time with a monotonic probability constraint","volume":"137","author":"Dolatsara","year":"2020","journal-title":"Decision Support Systems"},{"issue":"3","key":"10.1016\/j.eswa.2023.120218_b11","first-page":"636","article-title":"The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients","volume":"60","author":"Foekens","year":"2000","journal-title":"Cancer Research"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-020-18684-2","article-title":"Machine learning based early warning system enables accurate mortality risk prediction for COVID-19","volume":"11","author":"Gao","year":"2020","journal-title":"Nature communications"},{"issue":"2","key":"10.1016\/j.eswa.2023.120218_b13","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1093\/ejcts\/ezy403","article-title":"Statistical primer: multivariable regression considerations and pitfalls","volume":"55","author":"Grant","year":"2019","journal-title":"European Journal of Cardio-Thoracic Surgery"},{"key":"10.1016\/j.eswa.2023.120218_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116813","article-title":"Classifying the multi-omics data of gastric cancer using a deep feature selection method","volume":"200","author":"Hu","year":"2022","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2023.120218_b15","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1214\/08-AOAS169","article-title":"Random survival forests","volume":"2","author":"Ishwaran","year":"2008","journal-title":"The Annals of Applied Statistics"},{"issue":"2","key":"10.1016\/j.eswa.2023.120218_b16","doi-asserted-by":"crossref","first-page":"49","DOI":"10.3390\/a15020049","article-title":"Using explainable machine learning to explore the impact of synoptic reporting on prostate cancer","volume":"15","author":"Janssen","year":"2022","journal-title":"Algorithms"},{"issue":"2","key":"10.1016\/j.eswa.2023.120218_b17","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1093\/biomet\/60.2.267","article-title":"Marginal likelihoods based on Cox\u2019s regression and life model","volume":"60","author":"Kalbfleisch","year":"1973","journal-title":"Biometrika"},{"issue":"282","key":"10.1016\/j.eswa.2023.120218_b18","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1080\/01621459.1958.10501452","article-title":"Nonparametric estimation from incomplete observations","volume":"53","author":"Kaplan","year":"1958","journal-title":"Journal of the American Statistical Association"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12874-018-0482-1","article-title":"DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network","volume":"18","author":"Katzman","year":"2018","journal-title":"BMC Medical Research Methodology"},{"key":"10.1016\/j.eswa.2023.120218_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106164","article-title":"SurvLIME: A method for explaining machine learning survival models","volume":"203","author":"Kovalev","year":"2020","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2023.120218_b21","series-title":"Time-to-event prediction with neural networks and Cox regression","author":"Kvamme","year":"2019"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b22","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/TBME.2019.2909027","article-title":"Dynamic-DeepHit: A deep learning approach for dynamic survival analysis with competing risks based on longitudinal data","volume":"67","author":"Lee","year":"2019","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2023.120218_b23","doi-asserted-by":"crossref","unstructured":"Lee, C., Zame, W., Yoon, J., & Van Der Schaar, M. (2018). DeepHit: A deep learning approach to survival analysis with competing risks. In Proceedings of the AAAI Conference on artificial intelligence (pp. 2314\u20132321).","DOI":"10.1609\/aaai.v32i1.11842"},{"issue":"49","key":"10.1016\/j.eswa.2023.120218_b24","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1093\/jncimonographs\/lgu024","article-title":"Cancer survival: an overview of measures, uses, and interpretation","volume":"2014","author":"Mariotto","year":"2014","journal-title":"Journal of the National Cancer Institute Monographs"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-86327-7","article-title":"Explainable machine learning can outperform Cox regression predictions and provide insights in breast cancer survival","volume":"11","author":"Moncada-Torres","year":"2021","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2023.120218_b26","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/7671967","article-title":"Explainable artificial intelligence-based IoT device malware detection mechanism using image visualization and fine-tuned CNN-based transfer learning model","volume":"2022","author":"Naeem","year":"2022","journal-title":"Computational Intelligence and Neuroscience"},{"issue":"8","key":"10.1016\/j.eswa.2023.120218_b27","doi-asserted-by":"crossref","first-page":"3163","DOI":"10.1109\/JBHI.2021.3052441","article-title":"Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks","volume":"25","author":"Nagpal","year":"2021","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2023.120218_b28","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.eswa.2018.07.070","article-title":"A deep active survival analysis approach for precision treatment recommendations: application of prostate cancer","volume":"115","author":"Nezhad","year":"2019","journal-title":"Expert Systems with Applications"},{"issue":"5","key":"10.1016\/j.eswa.2023.120218_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3234150","article-title":"A survey on deep learning: Algorithms, techniques, and applications","volume":"51","author":"Pouyanfar","year":"2018","journal-title":"ACM Computing Surveys"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b30","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1200\/JCO.2000.18.1.94","article-title":"Randomized 2\u00d7 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients: an update based on 10 years\u2019 follow-up","volume":"18","author":"Sauerbrei","year":"2000","journal-title":"Journal of Clinical Oncology"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-67604-3","article-title":"The major effects of health-related quality of life on 5-year survival prediction among lung cancer survivors: applications of machine learning","volume":"10","author":"Sim","year":"2020","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2023.120218_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114832","article-title":"Identifying mortality factors from Machine Learning using Shapley values\u2013a case of COVID19","volume":"176","author":"Smith","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b33","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s44178-022-00004-x","article-title":"CACA guidelines for holistic integrative management of gastric cancer","volume":"1","author":"Society of Gastric Cancer of China Anti-Cancer Association secretariat","year":"2022","journal-title":"Holistic Integrative Oncology"},{"issue":"4","key":"10.1016\/j.eswa.2023.120218_b34","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1002\/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3","article-title":"The lasso method for variable selection in the Cox model","volume":"16","author":"Tibshirani","year":"1997","journal-title":"Statistics in Medicine"},{"issue":"17","key":"10.1016\/j.eswa.2023.120218_b35","doi-asserted-by":"crossref","first-page":"19246","DOI":"10.1007\/s11227-022-04631-z","article-title":"Explainable artificial intelligence approach in combating real-time surveillance of COVID19 pandemic from CT scan and X-ray images using ensemble model","volume":"78","author":"Ullah","year":"2022","journal-title":"The Journal of Supercomputing"},{"issue":"1","key":"10.1016\/j.eswa.2023.120218_b36","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-92799-4","article-title":"Long-term cancer survival prediction using multimodal deep learning","volume":"11","author":"Vale-Silva","year":"2021","journal-title":"Scientific Reports"},{"issue":"6","key":"10.1016\/j.eswa.2023.120218_b37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3214306","article-title":"Machine learning for survival analysis: A survey","volume":"51","author":"Wang","year":"2019","journal-title":"ACM Computing Surveys"},{"key":"10.1016\/j.eswa.2023.120218_b38","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.ins.2018.09.046","article-title":"A tree ensemble-based two-stage model for advanced-stage colorectal cancer survival prediction","volume":"474","author":"Wang","year":"2019","journal-title":"Information Sciences"},{"issue":"14\u201315","key":"10.1016\/j.eswa.2023.120218_b39","doi-asserted-by":"crossref","first-page":"1871","DOI":"10.1002\/sim.4780111409","article-title":"The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis","volume":"11","author":"Wei","year":"1992","journal-title":"Statistics in Medicine"},{"key":"10.1016\/j.eswa.2023.120218_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118873","article-title":"Deep neural networks with L1 and L2 regularization for high dimensional corporate credit risk prediction","volume":"213","author":"Yang","year":"2023","journal-title":"Expert Systems with Applications"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423007200?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423007200?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:40:30Z","timestamp":1714545630000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423007200"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":40,"alternative-id":["S0957417423007200"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120218","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CoxNAM: An interpretable deep survival analysis model","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.120218","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"120218"}}