{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T05:51:09Z","timestamp":1726033869711},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.eswa.2023.119799","type":"journal-article","created":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T21:27:29Z","timestamp":1678570049000},"page":"119799","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A remote and personalised novel approach for monitoring asthma severity levels from EEG signals utilizing classification algorithms"],"prefix":"10.1016","volume":"223","author":[{"given":"Rotem","family":"Haba","sequence":"first","affiliation":[]},{"given":"Gonen","family":"Singer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9025-3041","authenticated-orcid":false,"given":"Sara","family":"Naftali","sequence":"additional","affiliation":[]},{"given":"Mordechai R.","family":"Kramer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4930-3630","authenticated-orcid":false,"given":"Anat","family":"Ratnovsky","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.eswa.2023.119799_b0005","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1016\/j.jsams.2019.10.022","article-title":"The prevalence of mental health problems in elite athletes","volume":"23","author":"\u00c5kesdotter","year":"2020","journal-title":"Journal of Science and Medicine in Sport"},{"key":"10.1016\/j.eswa.2023.119799_b0010","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.cmpb.2017.03.023","article-title":"High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements","volume":"144","author":"Amaral","year":"2017","journal-title":"Computer Methods and Programs in Biomedicine"},{"issue":"10","key":"10.1016\/j.eswa.2023.119799_b0015","doi-asserted-by":"crossref","first-page":"2455","DOI":"10.1007\/s11517-020-02240-7","article-title":"Differential diagnosis of asthma and restrictive respiratory diseases by combining forced oscillation measurements, machine learning and neuro-fuzzy classifiers","volume":"58","author":"Amaral","year":"2020","journal-title":"Medical & Biological Engineering & Computing"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0020","doi-asserted-by":"crossref","first-page":"1066","DOI":"10.1109\/JBHI.2018.2845303","article-title":"Sleep apnea detection based on rician modeling of feature variation in multiband EEG signal","volume":"23","author":"Bhattacharjee","year":"2018","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"issue":"9","key":"10.1016\/j.eswa.2023.119799_b0025","doi-asserted-by":"crossref","first-page":"2003","DOI":"10.1109\/TBME.2017.2650259","article-title":"A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform","volume":"64","author":"Bhattacharyya","year":"2017","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2023.119799_b0030","first-page":"1393","article-title":"Learning to classify ordinal data: The data replication method","volume":"8","author":"Cardoso","year":"2007","journal-title":"Journal of Machine Learning Research"},{"issue":"6","key":"10.1016\/j.eswa.2023.119799_b0035","doi-asserted-by":"crossref","first-page":"1638","DOI":"10.1016\/j.surg.2015.12.029","article-title":"ROC-ing along: Evaluation and interpretation of receiver operating characteristic curves","volume":"159","author":"Carter","year":"2016","journal-title":"Surgery"},{"issue":"6","key":"10.1016\/j.eswa.2023.119799_b0040","doi-asserted-by":"crossref","first-page":"1830","DOI":"10.1164\/ajrccm.161.6.9903077","article-title":"Respiratory-related evoked potentials in children with life-threatening asthma","volume":"161","author":"Davenport","year":"2000","journal-title":"American Journal of Respiratory and Critical Care Medicine"},{"issue":"6","key":"10.1016\/j.eswa.2023.119799_b0045","doi-asserted-by":"crossref","first-page":"1843","DOI":"10.1152\/jappl.1986.60.6.1843","article-title":"Respiratory-related cortical potentials evoked by inspiratory occlusion in humans","volume":"60","author":"Davenport","year":"1986","journal-title":"Journal of Applied Physiology"},{"key":"10.1016\/j.eswa.2023.119799_b0050","first-page":"139","article-title":"EEG-based recognition of attention state using wavelet and support vector machine","author":"Djamal","year":"2016","journal-title":"IEEE"},{"key":"10.1016\/j.eswa.2023.119799_b0055","doi-asserted-by":"crossref","first-page":"274","DOI":"10.3389\/fneur.2019.00274","article-title":"Thinking about the future: A review of prognostic scales used in acute stroke","volume":"10","author":"Drozdowska","year":"2019","journal-title":"Frontiers in Neurology"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0060","doi-asserted-by":"crossref","first-page":"269","DOI":"10.3233\/THC-2001-9304","article-title":"Time-frequency analysis of breathing signals: In vitro airway model","volume":"9","author":"Elad","year":"2001","journal-title":"Technology and Health Care"},{"issue":"1","key":"10.1016\/j.eswa.2023.119799_b0065","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1111\/nyas.13218","article-title":"Machine learning approaches to personalize early prediction of asthma exacerbations","volume":"1387","author":"Finkelstein","year":"2017","journal-title":"Annals of the New York Academy of Sciences"},{"issue":"8","key":"10.1016\/j.eswa.2023.119799_b0070","first-page":"1311","article-title":"Obstructive sleep apnea is a common disorder in the population\u2014A review on the epidemiology of sleep apnea","volume":"7","author":"Franklin","year":"2015","journal-title":"Journal of Thoracic Disease"},{"key":"10.1016\/j.eswa.2023.119799_b0075","doi-asserted-by":"crossref","first-page":"54","DOI":"10.3389\/fped.2019.00054","article-title":"Use of symptoms scores, spirometry, and other pulmonary function testing for asthma monitoring","volume":"7","author":"Gallucci","year":"2019","journal-title":"Frontiers in Pediatrics"},{"key":"10.1016\/j.eswa.2023.119799_b0080","doi-asserted-by":"crossref","unstructured":"Gaudette, L., & Japkowicz, N. (2009). Evaluation methods for ordinal classification. In Y. Gao & N. Japkowicz (Eds.), Advances in artificial intelligence. Canadian AI 2009. Lecture Notes in Computer Science, vol 5549 (pp. 207\u2013210). Springer. https:\/\/doi.org\/10.1007\/978-3-642-01818-3_25.","DOI":"10.1007\/978-3-642-01818-3_25"},{"key":"10.1016\/j.eswa.2023.119799_b0085","unstructured":"Global Initiative for Asthma. GINA Report: Global Strategy for Asthma Management and Prevention (2017). Available online at: https:\/\/ginasthma.org\/gina-reports\/."},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0090","doi-asserted-by":"crossref","first-page":"1155","DOI":"10.3233\/IFS-162150","article-title":"Logistic discrimination based on G-mean and F-measure for imbalanced problem","volume":"31","author":"Guo","year":"2016","journal-title":"Journal of Intelligent & Fuzzy Systems"},{"issue":"1","key":"10.1016\/j.eswa.2023.119799_b0095","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1109\/TKDE.2015.2457911","article-title":"Ordinal regression methods: Survey and experimental study","volume":"28","author":"Guti\u00e9rrez","year":"2015","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"10","key":"10.1016\/j.eswa.2023.119799_b0100","doi-asserted-by":"crossref","first-page":"2517","DOI":"10.1007\/s11517-020-02206-9","article-title":"A comparison of regularized logistic regression and random forest machine learning models for daytime diagnosis of obstructive sleep apnea","volume":"58","author":"Hajipour","year":"2020","journal-title":"Medical & Biological Engineering & Computing"},{"issue":"8","key":"10.1016\/j.eswa.2023.119799_b0105","doi-asserted-by":"crossref","first-page":"1780","DOI":"10.3390\/s17081780","article-title":"Feasibility of a secure wireless sensing smartwatch application for the self-management of pediatric asthma","volume":"17","author":"Hosseini","year":"2017","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0110","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1164\/rccm.201712-2606OC","article-title":"Passive nocturnal physiologic monitoring enables early detection of exacerbations in children with asthma. A proof-of-concept study","volume":"198","author":"Huffaker","year":"2018","journal-title":"American Journal of Respiratory and Critical Care Medicine"},{"issue":"9","key":"10.1016\/j.eswa.2023.119799_b0115","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.3390\/diagnostics11091571","article-title":"Classification of sleep apnea based on sub-band decomposition of EEG signals","volume":"11","author":"Jayaraj","year":"2021","journal-title":"Diagnostics"},{"issue":"6","key":"10.1016\/j.eswa.2023.119799_b0120","doi-asserted-by":"crossref","first-page":"670","DOI":"10.3390\/e22060670","article-title":"Assessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoost","volume":"22","author":"Jim\u00e9nez-Garc\u00eda","year":"2020","journal-title":"Entropy"},{"issue":"2","key":"10.1016\/j.eswa.2023.119799_b0125","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1023\/A:1007452223027","article-title":"Machine learning for the detection of oil spills in satellite radar images","volume":"30","author":"Kubat","year":"1998","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2023.119799_b0130","unstructured":"Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In Proceedings of the fourteenth international conference on machine learning (pp. 179\u2013186). https:\/\/citeseerx.ist.psu.edu\/viewdoc\/summary?doi=10.1.1.43.4487."},{"key":"10.1016\/j.eswa.2023.119799_b0135","article-title":"Applying composite physiological characteristics to assess the severity of obstructive sleep apnea","volume":"1\u201311","author":"Lee","year":"2020","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"key":"10.1016\/j.eswa.2023.119799_b0140","series-title":"2013 IEEE 13th International Conference on Data Mining","first-page":"478","article-title":"Learning imbalanced multi-class data with optimal dichotomy weights","author":"Liu","year":"2013"},{"key":"10.1016\/j.eswa.2023.119799_b0150","article-title":"A decision tree-based method for ordinal classification problems","volume":"1\u201320","author":"Marudi","year":"2022","journal-title":"IISE Transactions"},{"key":"10.1016\/j.eswa.2023.119799_b0155","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.compbiomed.2018.10.035","article-title":"Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features","volume":"104","author":"Nabi","year":"2019","journal-title":"Computers in Biology and Medicine"},{"issue":"6","key":"10.1016\/j.eswa.2023.119799_b0160","doi-asserted-by":"crossref","first-page":"e0198846","DOI":"10.1371\/journal.pone.0198846","article-title":"Time-varying MVAR algorithms for directed connectivity analysis: Critical comparison in simulations and benchmark EEG data","volume":"13","author":"Pagnotta","year":"2018","journal-title":"PLoS ONE"},{"issue":"1","key":"10.1016\/j.eswa.2023.119799_b0165","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-15-223","article-title":"A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals","volume":"15","author":"Palaniappan","year":"2014","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2023.119799_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.dss.2020.113290","article-title":"Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming","volume":"134","author":"Pessach","year":"2020","journal-title":"Decision Support Systems"},{"key":"10.1016\/j.eswa.2023.119799_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113281","article-title":"Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques","volume":"149","author":"Rabin","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119799_b0180","article-title":"EMG-based speech recognition using dimensionality reduction methods","volume":"1\u201311","author":"Ratnovsky","year":"2021","journal-title":"Journal of Ambient Intelligence and Humanized Computing"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0185","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1049\/htl.2018.5101","article-title":"Automatic detection of sleep apnea events based on inter-band energy ratio obtained from multi-band EEG signal","volume":"6","author":"Saha","year":"2019","journal-title":"Healthcare Technology Letters"},{"issue":"1","key":"10.1016\/j.eswa.2023.119799_b0190","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.dsp.2007.12.004","article-title":"Time\u2013frequency feature representation using energy concentration: An overview of recent advances","volume":"19","author":"Sejdi\u0107","year":"2009","journal-title":"Digital Signal Processing"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0195","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","article-title":"A note on the concept of entropy","volume":"27","author":"Shannon","year":"1948","journal-title":"The Bell System Technical Journal"},{"issue":"8","key":"10.1016\/j.eswa.2023.119799_b0200","doi-asserted-by":"crossref","first-page":"821","DOI":"10.3390\/e22080821","article-title":"An objective-based entropy approach for interpretable decision tree models in support of human resource management: The case of absenteeism at work","volume":"22","author":"Singer","year":"2020","journal-title":"Entropy"},{"issue":"8","key":"10.1016\/j.eswa.2023.119799_b0205","doi-asserted-by":"crossref","first-page":"871","DOI":"10.3390\/e22080871","article-title":"Ordinal decision-tree-based ensemble approaches: The case of controlling the daily local growth rate of the covid-19 epidemic","volume":"22","author":"Singer","year":"2020","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2023.119799_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113375","article-title":"A weighted information-gain measure for ordinal classification trees","volume":"152","author":"Singer","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119799_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114707","article-title":"Classification of severity of trachea stenosis from EEG signals using ordinal decision-tree based algorithms and ensemble-based ordinal and non-ordinal algorithms","volume":"173","author":"Singer","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.eswa.2023.119799_b0220","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12967-017-1365-7","article-title":"Exhaled breath condensate metabolome clusters for endotype discovery in asthma","volume":"15","author":"Sinha","year":"2017","journal-title":"Journal of Translational Medicine"},{"issue":"4","key":"10.1016\/j.eswa.2023.119799_b0225","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","article-title":"A systematic analysis of performance measures for classification tasks","volume":"45","author":"Sokolova","year":"2009","journal-title":"Information Processing & Management"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0230","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1177\/1460458217723169","article-title":"Diagnosing asthma and chronic obstructive pulmonary disease with machine learning","volume":"25","author":"Spathis","year":"2019","journal-title":"Health Informatics Journal"},{"key":"10.1016\/j.eswa.2023.119799_b0235","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.jneumeth.2016.10.008","article-title":"Interpretable deep neural networks for single-trial EEG classification","volume":"274","author":"Sturm","year":"2016","journal-title":"Journal of Neuroscience Methods"},{"issue":"4","key":"10.1016\/j.eswa.2023.119799_b0240","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.alit.2019.04.010","article-title":"Deep learning facilitates the diagnosis of adult asthma","volume":"68","author":"Tomita","year":"2019","journal-title":"Allergology International"},{"issue":"8","key":"10.1016\/j.eswa.2023.119799_b0245","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1016\/j.rmed.2015.05.001","article-title":"Prognosis of new-onset 5 asthma diagnosed at adult age","volume":"109","author":"Tuomisto","year":"2015","journal-title":"Respiratory Medicine"},{"issue":"2","key":"10.1016\/j.eswa.2023.119799_b0250","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10916-018-1146-8","article-title":"An intelligent sleep apnea classification system based on EEG signals","volume":"43","author":"Vimala","year":"2019","journal-title":"Journal of Medical Systems"},{"issue":"4","key":"10.1016\/j.eswa.2023.119799_b0255","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1111\/j.1365-2648.2009.05238.x","article-title":"Self-management and symptom monitoring among older adults with chronic obstructive pulmonary disease","volume":"66","author":"Warwick","year":"2010","journal-title":"Journal of Advanced Nursing"},{"issue":"3","key":"10.1016\/j.eswa.2023.119799_b0260","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1136\/thorax.56.3.183","article-title":"The quality of home spirometry in school children with asthma","volume":"56","author":"Wensley","year":"2001","journal-title":"Thorax"},{"key":"10.1016\/j.eswa.2023.119799_b0265","first-page":"360","article-title":"Wavelet packet transform for feature extraction of EEG during mental tasks","volume":"Vol. 1","author":"Xue","year":"2003"},{"key":"10.1016\/j.eswa.2023.119799_b0275","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/8841002","article-title":"Diagnosis of asthma based on routine blood biomarkers using machine learning","author":"Zhan","year":"2020","journal-title":"Computational Intelligence and Neuroscience"},{"key":"10.1016\/j.eswa.2023.119799_b0280","doi-asserted-by":"crossref","unstructured":"Zhao, X., Wang, X., Yang, T., Ji, S., Wang, H., Wang, J., Wang, Y., & Wu, Q. (2021). Classification of sleep apnea based on EEG sub-band signal characteristics. Scientific Reports, 11(1), 1\u201311. https:\/\/doi.org\/10.1038\/s41598-021-85138-0.","DOI":"10.1038\/s41598-021-85138-0"},{"issue":"9","key":"10.1016\/j.eswa.2023.119799_b0285","doi-asserted-by":"crossref","first-page":"4218","DOI":"10.3390\/app12094218","article-title":"Detection of sleep apnea from electrocardiogram and pulse oximetry signals using random forest","volume":"12","author":"Zhu","year":"2022","journal-title":"Applied Sciences"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423003007?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423003007?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,22]],"date-time":"2023-11-22T11:43:30Z","timestamp":1700653410000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423003007"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":55,"alternative-id":["S0957417423003007"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119799","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A remote and personalised novel approach for monitoring asthma severity levels from EEG signals utilizing classification algorithms","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119799","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119799"}}