{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:42:11Z","timestamp":1720316531554},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.eswa.2023.119755","type":"journal-article","created":{"date-parts":[[2023,3,3]],"date-time":"2023-03-03T02:34:01Z","timestamp":1677810841000},"page":"119755","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["N-ary relation prediction based on knowledge graphs with important entity detection"],"prefix":"10.1016","volume":"221","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7665-6386","authenticated-orcid":false,"given":"Peijie","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9104-4540","authenticated-orcid":false,"given":"Jianrui","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4775-6660","authenticated-orcid":false,"given":"Lide","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2949-8167","authenticated-orcid":false,"given":"Zhihui","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2023.119755_b1","first-page":"9649","article-title":"Boxe: A box embedding model for knowledge base completion","volume":"33","author":"Abboud","year":"2020","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.119755_b2","doi-asserted-by":"crossref","unstructured":"Bala\u017eevi\u0107,\u00a0I., Allen,\u00a0C., & Hospedales,\u00a0T. M. (2019). Tucker: Tensor factorization for knowledge graph completion. In Empirical methods in natural language processing and international joint conference on natural language processing (pp. 5188\u20135197).","DOI":"10.18653\/v1\/D19-1522"},{"key":"10.1016\/j.eswa.2023.119755_b3","doi-asserted-by":"crossref","unstructured":"Bollacker,\u00a0K., Evans,\u00a0C., Paritosh,\u00a0P., Sturge,\u00a0T., & Taylor,\u00a0J. (2008). Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD international conference on management of data (pp. 1247\u20131250).","DOI":"10.1145\/1376616.1376746"},{"key":"10.1016\/j.eswa.2023.119755_b4","unstructured":"Bruna,\u00a0J., Zaremba,\u00a0W., Szlam,\u00a0A., & LeCun,\u00a0Y. (2013). Spectral networks and locally connected networks on graphs. In International conference on learning representations."},{"key":"10.1016\/j.eswa.2023.119755_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117035","article-title":"Explicable recommendation based on knowledge graph","volume":"200","author":"Cai","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119755_b6","doi-asserted-by":"crossref","unstructured":"Di,\u00a0S., Yao,\u00a0Q., & Chen,\u00a0L. (2021). Searching to sparsify tensor decomposition for n-ary relational data. In Proceedings of the web conference 2021 (pp. 4043\u20134054).","DOI":"10.1145\/3442381.3449853"},{"key":"10.1016\/j.eswa.2023.119755_b7","doi-asserted-by":"crossref","unstructured":"Dong,\u00a0X., Gabrilovich,\u00a0E., Heitz,\u00a0G., Horn,\u00a0W., Lao,\u00a0N., Murphy,\u00a0K., et al. (2014). Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 601\u2013610).","DOI":"10.1145\/2623330.2623623"},{"key":"10.1016\/j.eswa.2023.119755_b8","first-page":"2224","article-title":"Convolutional networks on graphs for learning molecular fingerprints","volume":"28","author":"Duvenaud","year":"2015","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.119755_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118806","article-title":"Learning knowledge graph embedding with a dual-attention embedding network","volume":"212","author":"Fang","year":"2023","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119755_b10","doi-asserted-by":"crossref","unstructured":"Fatemi,\u00a0B., Taslakian,\u00a0P., Vazquez,\u00a0D., & Poole,\u00a0D. (2020). Knowledge hypergraphs: Prediction beyond binary relations. In International joint conference on artificial intelligence.","DOI":"10.24963\/ijcai.2020\/303"},{"key":"10.1016\/j.eswa.2023.119755_b11","series-title":"Knowledge hypergraph embedding meets relational algebra","author":"Fatemi","year":"2022"},{"key":"10.1016\/j.eswa.2023.119755_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117725","article-title":"A hereditary attentive template-based approach for complex knowledge base question answering systems","author":"Gomes","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2023.119755_b13","doi-asserted-by":"crossref","unstructured":"Guan,\u00a0S., Jin,\u00a0X., Guo,\u00a0J., Wang,\u00a0Y., & Cheng,\u00a0X. (2020). Neuinfer: Knowledge inference on n-ary facts. In Proceedings of the 58th annual meeting of the association for computational linguistics (pp. 6141\u20136151).","DOI":"10.18653\/v1\/2020.acl-main.546"},{"key":"10.1016\/j.eswa.2023.119755_b14","doi-asserted-by":"crossref","unstructured":"Guan,\u00a0S., Jin,\u00a0X., Wang,\u00a0Y., & Cheng,\u00a0X. (2019). Link prediction on n-ary relational data. In The world wide web conference (pp. 583\u2013593).","DOI":"10.1145\/3308558.3313414"},{"key":"10.1016\/j.eswa.2023.119755_b15","first-page":"1025","article-title":"Inductive representation learning on large graphs","volume":"30","author":"Hamilton","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.119755_b16","doi-asserted-by":"crossref","unstructured":"He,\u00a0X., Deng,\u00a0K., Wang,\u00a0X., Li,\u00a0Y., Zhang,\u00a0Y., & Wang,\u00a0M. (2020). Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (pp. 639\u2013648).","DOI":"10.1145\/3397271.3401063"},{"key":"10.1016\/j.eswa.2023.119755_b17","series-title":"Rpresentation learning for NLP","first-page":"69","article-title":"Knowledge base completion: Baselines strike back","author":"Kadlec","year":"2017"},{"key":"10.1016\/j.eswa.2023.119755_b18","unstructured":"Kingma,\u00a0D. P., & Ba,\u00a0J. (2014). Adam: A method for stochastic optimization. In International conference on learning representations."},{"key":"10.1016\/j.eswa.2023.119755_b19","unstructured":"Klicpera,\u00a0J., Bojchevski,\u00a0A., & G\u00fcnnemann,\u00a0S. (2018). Predict then propagate: Graph neural networks meet personalized pagerank. In International conference on learning representations."},{"issue":"2","key":"10.1016\/j.eswa.2023.119755_b20","doi-asserted-by":"crossref","first-page":"167","DOI":"10.3233\/SW-140134","article-title":"Dbpedia\u2013A large-scale, multilingual knowledge base extracted from wikipedia","volume":"6","author":"Lehmann","year":"2015","journal-title":"Semantic Web"},{"key":"10.1016\/j.eswa.2023.119755_b21","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.ins.2022.03.079","article-title":"A fuzzy semantic representation and reasoning model for multiple associative predicates in knowledge graph","volume":"599","author":"Li","year":"2022","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2023.119755_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.109889","article-title":"A knowledge graph completion model based on contrastive learning and relation enhancement method","volume":"256","author":"Li","year":"2022","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2023.119755_b23","doi-asserted-by":"crossref","unstructured":"Liu,\u00a0Y., Yao,\u00a0Q., & Li,\u00a0Y. (2020). Generalizing tensor decomposition for n-ary relational knowledge bases. In Proceedings of the web conference 2020 (pp. 1104\u20131114).","DOI":"10.1145\/3366423.3380188"},{"key":"10.1016\/j.eswa.2023.119755_b24","doi-asserted-by":"crossref","unstructured":"Liu,\u00a0Y., Yao,\u00a0Q., & Li,\u00a0Y. (2021). Role-aware modeling for n-ary relational knowledge bases. In Proceedings of the web conference 2021 (pp. 2660\u20132671).","DOI":"10.1145\/3442381.3449874"},{"key":"10.1016\/j.eswa.2023.119755_b25","first-page":"3","article-title":"Rectifier nonlinearities improve neural network acoustic models","volume":"vol. 30","author":"Maas","year":"2013"},{"issue":"1","key":"10.1016\/j.eswa.2023.119755_b26","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1109\/JPROC.2015.2483592","article-title":"A review of relational machine learning for knowledge graphs","volume":"104","author":"Nickel","year":"2015","journal-title":"Proceedings of the IEEE"},{"key":"10.1016\/j.eswa.2023.119755_b27","doi-asserted-by":"crossref","unstructured":"Rosso,\u00a0P., Yang,\u00a0D., & Cudr\u00e9-Mauroux,\u00a0P. (2020). Beyond triplets: Hyper-relational knowledge graph embedding for link prediction. In Proceedings of the web conference 2020 (pp. 1885\u20131896).","DOI":"10.1145\/3366423.3380257"},{"key":"10.1016\/j.eswa.2023.119755_b28","series-title":"European semantic web conference","first-page":"593","article-title":"Modeling relational data with graph convolutional networks","author":"Schlichtkrull","year":"2018"},{"key":"10.1016\/j.eswa.2023.119755_b29","unstructured":"Vashishth,\u00a0S., Sanyal,\u00a0S., Nitin,\u00a0V., & Talukdar,\u00a0P. (2019). Composition-based multi-relational graph convolutional networks. In International conference on learning representations."},{"key":"10.1016\/j.eswa.2023.119755_b30","unstructured":"Veli\u010dkovi\u0107,\u00a0P., Cucurull,\u00a0G., Casanova,\u00a0A., Romero,\u00a0A., Lio,\u00a0P., & Bengio,\u00a0Y. (2017). Graph attention networks. In International conference on learning representations."},{"issue":"10","key":"10.1016\/j.eswa.2023.119755_b31","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1145\/2629489","article-title":"Wikidata: A free collaborative knowledgebase","volume":"57","author":"Vrande\u010di\u0107","year":"2014","journal-title":"Communications of the ACM"},{"key":"10.1016\/j.eswa.2023.119755_b32","first-page":"1112","article-title":"Knowledge graph embedding by translating on hyperplanes","volume":"vol. 28","author":"Wang","year":"2014"},{"key":"10.1016\/j.eswa.2023.119755_b33","unstructured":"Wen,\u00a0J., Li,\u00a0J., Mao,\u00a0Y., Chen,\u00a0S., & Zhang,\u00a0R. (2016). On the representation and embedding of knowledge bases beyond binary relations. In International joint conference on artificial intelligence (pp. 1300\u20131307)."},{"key":"10.1016\/j.eswa.2023.119755_b34","series-title":"International conference on machine learning","first-page":"5453","article-title":"Representation learning on graphs with jumping knowledge networks","author":"Xu","year":"2018"},{"key":"10.1016\/j.eswa.2023.119755_b35","article-title":"Hypergcn: Hypergraph convolutional networks for semi-supervised classification","volume":"22","author":"Yadati","year":"2018","journal-title":"Association for the Advancement of Artificial Intelligence"},{"key":"10.1016\/j.eswa.2023.119755_b36","first-page":"1511","article-title":"Hypergcn: A new method for training graph convolutional networks on hypergraphs","volume":"32","author":"Yadati","year":"2019","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2023.119755_b37","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.neucom.2022.04.026","article-title":"HYPER2: Hyperbolic embedding for hyper-relational link prediction","volume":"492","author":"Yan","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2023.119755_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116796","article-title":"Complex graph convolutional network for link prediction in knowledge graphs","volume":"200","author":"Zeb","year":"2022","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2023.119755_b39","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1109\/TKDE.2018.2880448","article-title":"Re-revisiting learning on hypergraphs: Confidence interval, subgradient method, and extension to multiclass","volume":"32","author":"Zhang","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2023.119755_b40","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.ins.2022.01.076","article-title":"Knowledge graph embedding by logical-default attention graph convolution neural network for link prediction","volume":"593","author":"Zhang","year":"2022","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2023.119755_b41","doi-asserted-by":"crossref","unstructured":"Zhang,\u00a0R., Li,\u00a0J., Mei,\u00a0J., & Mao,\u00a0Y. (2018). Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding. In Proceedings of the 2018 world wide web conference (pp. 1185\u20131194).","DOI":"10.1145\/3178876.3186017"},{"key":"10.1016\/j.eswa.2023.119755_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.adhoc.2020.102402","article-title":"TRFR: A ternary relation link prediction framework on knowledge graphs","volume":"113","author":"Zhang","year":"2021","journal-title":"Ad Hoc Networks"},{"issue":"23","key":"10.1016\/j.eswa.2023.119755_b43","doi-asserted-by":"crossref","first-page":"16005","DOI":"10.1007\/s00521-021-06221-1","article-title":"A structure distinguishable graph attention network for knowledge base completion","volume":"33","author":"Zhou","year":"2021","journal-title":"Neural Computing and Applications"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423002567?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423002567?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,31]],"date-time":"2023-03-31T07:46:38Z","timestamp":1680248798000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423002567"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":43,"alternative-id":["S0957417423002567"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119755","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"N-ary relation prediction based on knowledge graphs with important entity detection","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119755","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119755"}}