{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T07:22:19Z","timestamp":1721805739671},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100015386","name":"University of Silesia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100015386","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.eswa.2023.119601","type":"journal-article","created":{"date-parts":[[2023,1,31]],"date-time":"2023-01-31T02:34:36Z","timestamp":1675132476000},"page":"119601","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Practically motivated adaptive fusion method with tie analysis for multilabel dispersed data"],"prefix":"10.1016","volume":"219","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0616-9694","authenticated-orcid":false,"given":"Ma\u0142gorzata","family":"Przyby\u0142a-Kasperek","sequence":"first","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.eswa.2023.119601_b1","doi-asserted-by":"crossref","first-page":"2017","DOI":"10.3390\/s19092017","article-title":"Virtual sensors for optimal integration of human activity data","volume":"19","author":"Aguileta","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2023.119601_b2","doi-asserted-by":"crossref","first-page":"9533","DOI":"10.1109\/ACCESS.2017.2697839","article-title":"Data fusion and IoT for smart ubiquitous environments: A survey","volume":"5","author":"Alam","year":"2017","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.eswa.2023.119601_b3","doi-asserted-by":"crossref","first-page":"121","DOI":"10.4086\/toc.2012.v008a006","article-title":"The multiplicative weights update method: a meta-algorithm and applications","volume":"8","author":"Arora","year":"2012","journal-title":"Theory of Computing"},{"issue":"5","key":"10.1016\/j.eswa.2023.119601_b4","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/S0020-7373(88)80012-9","article-title":"Protos: An exemplar-based learning apprentice","volume":"29","author":"Bareiss","year":"1988","journal-title":"International Journal of Man-Machine Studios"},{"key":"10.1016\/j.eswa.2023.119601_b5","series-title":"Multiple classifier systems","first-page":"292","article-title":"Bayesian analysis of linear combiners","volume":"vol. 4472","author":"Biggio","year":"2007"},{"key":"10.1016\/j.eswa.2023.119601_b6","series-title":"UCI repository of machine learning databases, Irvine, CA: Dept","author":"Blake","year":"1998"},{"key":"10.1016\/j.eswa.2023.119601_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.comnet.2022.109048","article-title":"Fusion of federated learning and industrial Internet of Things: A survey","volume":"212","author":"Boobalan","year":"2022","journal-title":"Computer Networks"},{"key":"10.1016\/j.eswa.2023.119601_b8","series-title":"First IEEE international conference on artificial intelligence and knowledge engineering","first-page":"54","article-title":"Neuro-ensemble","author":"Boubrahimi","year":"2018"},{"issue":"8","key":"10.1016\/j.eswa.2023.119601_b9","doi-asserted-by":"crossref","first-page":"2350","DOI":"10.3390\/s20082350","article-title":"Choosing the best sensor fusion method: A machine-learning approach","volume":"20","author":"Brena","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2023.119601_b10","series-title":"2020 international joint conference on neural networks","first-page":"1","article-title":"Federated learning with hierarchical clustering of local updates to improve training on non-IID data","author":"Briggs","year":"2020"},{"key":"10.1016\/j.eswa.2023.119601_b11","series-title":"Pattern recognition and image analysis","first-page":"202","article-title":"Vote-based classifier selection for biomedical NER using genetic algorithms","volume":"vol. 4478","author":"Dimililer","year":"2007"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b12","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11704-019-8208-z","article-title":"A survey on ensemble learning","volume":"14","author":"Dong","year":"2020","journal-title":"Frontiers of Computer Science"},{"key":"10.1016\/j.eswa.2023.119601_b13","series-title":"UCI machine learning repository","author":"Dua","year":"2017"},{"key":"10.1016\/j.eswa.2023.119601_b14","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.inffus.2018.02.003","article-title":"Combining univariate approaches for ensemble change detection in multivariate data","volume":"45","author":"Faithfull","year":"2019","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.119601_b15","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.inffus.2017.12.003","article-title":"Multiple classifiers in biometrics. part 1: Fundamentals and review","volume":"44","author":"Fi\u00e9rrez","year":"2018","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.119601_b16","series-title":"Soft computing: Theories and applications","first-page":"181","article-title":"Multi-feature-based type-2 fuzzy set induced parallel rank-level fusion in face recognition","author":"Ghosh","year":"2022"},{"key":"10.1016\/j.eswa.2023.119601_b17","series-title":"Proceedings of the second international conference on computer and communication technologies","first-page":"85","article-title":"On context awareness for multisensor data fusion in IoT","author":"Gite","year":"2016"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b18","doi-asserted-by":"crossref","first-page":"414","DOI":"10.3390\/s17020414","article-title":"An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox","volume":"17","author":"Jing","year":"2017","journal-title":"Sensors"},{"issue":"5","key":"10.1016\/j.eswa.2023.119601_b19","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1017\/S0269888913000155","article-title":"A survey of commonly used ensemble-based classification techniques","volume":"29","author":"Jurek","year":"2014","journal-title":"Knowledge Engineering Review"},{"issue":"3","key":"10.1016\/j.eswa.2023.119601_b20","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/34.667881","article-title":"On combining classifiers","volume":"20","author":"Kittler","year":"1998","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2023.119601_b21","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.inffus.2017.02.004","article-title":"Ensemble learning for data stream analysis: A survey","volume":"37","author":"Krawczyk","year":"2017","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.119601_b22","series-title":"Combining pattern classifiers: Methods and algorithms","author":"Kuncheva","year":"2004"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b23","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s10115-012-0586-6","article-title":"A weighted voting framework for classifiers ensembles","volume":"38","author":"Kuncheva","year":"2014","journal-title":"Knowledge and Information Systems"},{"issue":"6","key":"10.1016\/j.eswa.2023.119601_b24","first-page":"25","article-title":"An ensemble classifier for the prediction of heart disease","volume":"3","author":"Kurian","year":"2018","journal-title":"International Journal of Scientific Research in Computer Science"},{"key":"10.1016\/j.eswa.2023.119601_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106854","article-title":"A review of applications in federated learning","volume":"149","author":"Li","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.eswa.2023.119601_b26","series-title":"2009 IEEE international conference on network infrastructure and digital content","first-page":"129","article-title":"Information fusion in wireless sensor network based on rough set","author":"Li","year":"2009"},{"key":"10.1016\/j.eswa.2023.119601_b27","series-title":"IEEE conference on computer vision and pattern recognition","first-page":"10713","article-title":"Model-contrastive federated learning","author":"Li","year":"2021"},{"issue":"6","key":"10.1016\/j.eswa.2023.119601_b28","doi-asserted-by":"crossref","first-page":"605","DOI":"10.1080\/15472450.2019.1583965","article-title":"Traffic speed prediction for intelligent transportation system based on a deep feature fusion model","volume":"23","author":"Li","year":"2019","journal-title":"Journal of Intelligent Transportation Systems"},{"issue":"3","key":"10.1016\/j.eswa.2023.119601_b29","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/MSP.2020.2975749","article-title":"Federated learning: Challenges, methods, and future directions","volume":"37","author":"Li","year":"2020","journal-title":"IEEE Signal Processing Magazine"},{"issue":"3","key":"10.1016\/j.eswa.2023.119601_b30","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1109\/MCE.2019.2959108","article-title":"Preserving data privacy via federated learning: Challenges and solutions","volume":"9","author":"Li","year":"2020","journal-title":"IEEE Consumer Electronics Magazine"},{"key":"10.1016\/j.eswa.2023.119601_b31","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.inffus.2019.12.001","article-title":"A survey on machine learning for data fusion","volume":"57","author":"Meng","year":"2020","journal-title":"Information Fusion"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b32","first-page":"125","article-title":"Learning by being told and learning from examples: an experimental comparison of the two methods of knowledge acquisition in the context of development an expert system for soybean disease diagnosis","volume":"4","author":"Michalski","year":"1980","journal-title":"International Journal of Policy Analysis and Information Systems"},{"key":"10.1016\/j.eswa.2023.119601_b33","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.inffus.2019.06.021","article-title":"A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks","volume":"53","author":"Muzammal","year":"2020","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.119601_b34","series-title":"Multiple classifier systems","first-page":"167","article-title":"Classifier selection approaches for multi-label problems","volume":"vol. 6713","author":"Pillai","year":"2011"},{"key":"10.1016\/j.eswa.2023.119601_b35","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.pmcj.2018.05.005","article-title":"Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices","volume":"47","author":"Pires","year":"2018","journal-title":"Pervasive and Mobile Computing"},{"key":"10.1016\/j.eswa.2023.119601_b36","series-title":"Computational collective intelligence","first-page":"301","article-title":"Comparison of dispersed decision systems with Pawlak model and with negotiation stage in terms of five selected fusion methods","volume":"vol. 11056","author":"Przybyla-Kasperek","year":"2018"},{"key":"10.1016\/j.eswa.2023.119601_b37","series-title":"Beyond databases, architectures and structures","first-page":"220","article-title":"Comparison of selected fusion methods from the abstract and rank levels in a system using Pawlak\u2019s approach to coalition formation","volume":"vol. 928","author":"Przybyla-Kasperek","year":"2018"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b38","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1142\/S0219622019500020","article-title":"Three conflict methods in multiple classifiers that use dispersed knowledge","volume":"18","author":"Przybyla-Kasperek","year":"2019","journal-title":"International Journal of Information Technology and Decision Making"},{"issue":"12","key":"10.1016\/j.eswa.2023.119601_b39","doi-asserted-by":"crossref","first-page":"1568","DOI":"10.3390\/e23121568","article-title":"Neural network used for the fusion of predictions obtained by the K-nearest neighbors algorithm based on independent data sources","volume":"23","author":"Przybyla-Kasperek","year":"2021","journal-title":"Entropy"},{"issue":"4","key":"10.1016\/j.eswa.2023.119601_b40","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1080\/03081079.2017.1314276","article-title":"Comparison of fusion methods from the abstract level and the rank level in a dispersed decision-making system","volume":"46","author":"Przybyla-Kasperek","year":"2017","journal-title":"International Journal of General Systems"},{"key":"10.1016\/j.eswa.2023.119601_b41","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.is.2017.05.002","article-title":"Dispersed decision-making system with fusion methods from the rank level and the measurement level - A comparative study","volume":"69","author":"Przybyla-Kasperek","year":"2017","journal-title":"Information Systems"},{"issue":"22","key":"10.1016\/j.eswa.2023.119601_b42","doi-asserted-by":"crossref","first-page":"4873","DOI":"10.3390\/s19224873","article-title":"Continuous dynamics monitoring of multi-lake water extent using a spatial and temporal adaptive fusion method based on two sets of MODIS products","volume":"19","author":"Rao","year":"2019","journal-title":"Sensors"},{"issue":"10","key":"10.1016\/j.eswa.2023.119601_b43","doi-asserted-by":"crossref","first-page":"1517","DOI":"10.1016\/j.neunet.2006.01.019","article-title":"Trainable fusion rules. II. Small sample-size effects","volume":"19","author":"Raudys","year":"2006","journal-title":"Neural Networks"},{"issue":"2","key":"10.1016\/j.eswa.2023.119601_b44","doi-asserted-by":"crossref","first-page":"131","DOI":"10.3233\/IDA-2005-9202","article-title":"Feature set decomposition for decision trees","volume":"9","author":"Rokach","year":"2005","journal-title":"Intelligent Data Analysis"},{"issue":"7","key":"10.1016\/j.eswa.2023.119601_b45","doi-asserted-by":"crossref","first-page":"757","DOI":"10.1016\/0031-3203(90)90098-6","article-title":"Multiple binary decision tree classifiers","volume":"23","author":"Shlien","year":"1990","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2023.119601_b46","series-title":"Vehicle recognition using rule based methods","author":"Siebert","year":"1987"},{"key":"10.1016\/j.eswa.2023.119601_b47","series-title":"Proceedings of 2004 international conference on machine learning and cybernetics (IEEE cat. no. 04EX826), vol. 6","first-page":"3511","article-title":"Application research of information fusion technology of multi-sensor in level measurement","author":"Song","year":"2004"},{"key":"10.1016\/j.eswa.2023.119601_b48","series-title":"Multiple classifier systems","first-page":"26","article-title":"A Bayesian approach for combining ensembles of GP classifiers","volume":"vol. 6713","author":"Stefano","year":"2011"},{"key":"10.1016\/j.eswa.2023.119601_b49","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.sigpro.2015.07.005","article-title":"Adaptive fusion algorithm of heterogeneous sensor networks under different illumination conditions","volume":"126","author":"Tong","year":"2016","journal-title":"Signal Processing"},{"issue":"9","key":"10.1016\/j.eswa.2023.119601_b50","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1007\/s00500-009-0490-5","article-title":"Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey","volume":"14","author":"Verikas","year":"2010","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2023.119601_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.104030","article-title":"A new belief divergence measure for Dempster\u2013Shafer theory based on belief and plausibility function and its application in multi-source data fusion","volume":"97","author":"Wang","year":"2021","journal-title":"Engineering Applications of Artificial Intelligence"},{"issue":"6","key":"10.1016\/j.eswa.2023.119601_b52","doi-asserted-by":"crossref","first-page":"1117","DOI":"10.1109\/JSTSP.2015.2407855","article-title":"Bayesian fusion of multi-band images","volume":"9","author":"Wei","year":"2015","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"key":"10.1016\/j.eswa.2023.119601_b53","series-title":"Data mining, vol. 2(4)","article-title":"Practical machine learning tools and techniques","author":"Witten","year":"2005"},{"issue":"4","key":"10.1016\/j.eswa.2023.119601_b54","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1109\/34.588027","article-title":"Combination of multiple classifiers using local accuracy estimates","volume":"19","author":"Woods","year":"1997","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2023.119601_b55","series-title":"Innovations in hybrid intelligent systems","first-page":"144","article-title":"Experiments with trained and untrained fusers","volume":"vol. 44","author":"Wo\u017aniak","year":"2008"},{"key":"10.1016\/j.eswa.2023.119601_b56","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.inffus.2013.04.006","article-title":"A survey of multiple classifier systems as hybrid systems","volume":"16","author":"Wo\u017aniak","year":"2014","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2023.119601_b57","series-title":"Hybrid artificial intelligence systems","first-page":"541","article-title":"Some remarks on chosen methods of classifier fusion based on weighted voting","volume":"vol. 5572","author":"Wo\u017aniak","year":"2009"},{"key":"10.1016\/j.eswa.2023.119601_b58","series-title":"Federated learning","author":"Yang","year":"2019"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423001021?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423001021?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:24:06Z","timestamp":1714544646000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423001021"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":58,"alternative-id":["S0957417423001021"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119601","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Practically motivated adaptive fusion method with tie analysis for multilabel dispersed data","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119601","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119601"}}