{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:31:22Z","timestamp":1726417882419},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.eswa.2023.119532","type":"journal-article","created":{"date-parts":[[2023,1,12]],"date-time":"2023-01-12T07:23:33Z","timestamp":1673508213000},"page":"119532","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Early identification of PCOS with commonly known diseases: Obesity, diabetes, high blood pressure and heart disease using machine learning techniques"],"prefix":"10.1016","volume":"217","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9390-396X","authenticated-orcid":false,"given":"Shivani","family":"Aggarwal","sequence":"first","affiliation":[]},{"given":"Kavita","family":"Pandey","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.eswa.2023.119532_b0005","doi-asserted-by":"crossref","first-page":"53","DOI":"10.2174\/1872212115999201224130204","article-title":"An Analysis of PCOS Disease Prediction Model Using Machine Learning Classification Algorithms","volume":"15","author":"Aggarwal","year":"2021","journal-title":"Recent Patent of Engineering"},{"key":"10.1016\/j.eswa.2023.119532_b0010","doi-asserted-by":"crossref","first-page":"29207","DOI":"10.1007\/s11042-022-12913-0","article-title":"Determining the representative features of polycystic ovary syndrome via Design of Experiments","volume":"81","author":"Aggarwal","year":"2022","journal-title":"Multimedia Tools and Applications"},{"issue":"3","key":"10.1016\/j.eswa.2023.119532_b0015","doi-asserted-by":"crossref","first-page":"924","DOI":"10.21123\/bsj.2020.17.3(Suppl.).0924","article-title":"A Study of Apelin-36 and GST Levels with Their Relationship to Lipid and Other Biochemical Parameters in the Prediction of Heart Diseases in PCOS Women Patients","volume":"17","author":"Ali","year":"2020","journal-title":"Baghdad Science Journal"},{"key":"10.1016\/j.eswa.2023.119532_b0020","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.metabol.2017.09.016","article-title":"Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences","volume":"86","author":"Anagnostis","year":"2018","journal-title":"Metabolism: Clinical and Experimental"},{"key":"10.1016\/j.eswa.2023.119532_b0025","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-319-50478-0_22","article-title":"A tutorial on machine learning and data science tools with python","author":"Bloice","year":"2016","journal-title":"In Machine Learning for Health Informatics"},{"key":"10.1016\/j.eswa.2023.119532_b0030","unstructured":"Causes of Sleep Apnea. (2021). WebMD. https:\/\/www.webmd.com\/sleep-disorders\/sleep-apnea\/obstructive-sleep-apnea-causes."},{"key":"10.1016\/j.eswa.2023.119532_b0035","unstructured":"Centers for Disease Control and Prevention. (2020). PCOS (Polycystic Ovary Syndrome) and Diabetes. (n.d.). https:\/\/www.cdc.gov\/diabetes\/basics\/pcos.html. Accessed February, 2022."},{"issue":"12","key":"10.1016\/j.eswa.2023.119532_b0040","doi-asserted-by":"crossref","DOI":"10.3390\/metabo11120869","article-title":"Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites","volume":"11","author":"Chen","year":"2021","journal-title":"Metabolites"},{"issue":"9","key":"10.1016\/j.eswa.2023.119532_b0045","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1080\/09513590.2017.1342240","article-title":"PCOS and diabetes mellitus : From insulin resistance to altered beta-pancreatic function, a link in evolution","volume":"33","author":"Condorelli","year":"2017","journal-title":"Gynecological Endocrinology"},{"issue":"2","key":"10.1016\/j.eswa.2023.119532_b0050","doi-asserted-by":"crossref","first-page":"94","DOI":"10.5114\/pm.2019.84039","article-title":"Blood pressure in postmenopausal women with a history of polycystic ovary syndrome. Przegl\u0105d Menopauzalny=","volume":"18","author":"Doroszewska","year":"2019","journal-title":"Menopause Review"},{"issue":"APR","key":"10.1016\/j.eswa.2023.119532_b0055","first-page":"1","article-title":"Poly Cystic Ovarian Syndrome: An updated overview","volume":"7","author":"El Hayek","year":"2016","journal-title":"Frontiers in Physiology"},{"issue":"5","key":"10.1016\/j.eswa.2023.119532_b0060","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1038\/nrendo.2018.24","article-title":"Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment","volume":"14","author":"Escobar-Morreale","year":"2018","journal-title":"Nature Reviews Endocrinology"},{"issue":"3","key":"10.1016\/j.eswa.2023.119532_b0065","doi-asserted-by":"crossref","first-page":"128","DOI":"10.14445\/22312803\/IJCTT-V48P126","article-title":"Supervised Machine Learning Algorithms: Classification and Comparison","volume":"48","author":"Osisanwo","year":"2017","journal-title":"International Journal of Computer Trends and Technology"},{"issue":"10","key":"10.1016\/j.eswa.2023.119532_b0070","doi-asserted-by":"crossref","first-page":"1424","DOI":"10.1111\/obr.12720","article-title":"Pharmacologic therapy to induce weight loss in women who have obesity\/overweight with polycystic ovary syndrome : A systematic review and network","volume":"19","author":"Wang","year":"2018","journal-title":"Obesity Reviews"},{"issue":"8","key":"10.1016\/j.eswa.2023.119532_b0075","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1080\/09513590.2018.1563885","article-title":"Associations of preconception Body Mass Index in women with PCOS and BMI and blood pressure of their offspring Associations of preconception Body Mass Index in women with PCOS and BMI and blood pressure of their offspring","volume":"35","author":"Fauser","year":"2019","journal-title":"Gynecological Endocrinology"},{"key":"10.1016\/j.eswa.2023.119532_b0080","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.metabol.2018.11.002","article-title":"CHARACTERISTICS OF OBESITY IN POLYCYSTIC OVARY","volume":"92","author":"Glueck","year":"2019","journal-title":"Metabolism"},{"key":"10.1016\/j.eswa.2023.119532_b0085","unstructured":"Heart Disease Dataset. (2019). Kaggle. https:\/\/www.kaggle.com\/datasets\/johnsmith88\/heart-disease-dataset."},{"issue":"4","key":"10.1016\/j.eswa.2023.119532_b0090","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1093\/humupd\/dmy007","article-title":"Ethnicity, obesity and the prevalence of impaired glucose tolerance and type 2 diabetes in PCOS : A systematic review and meta-regression","volume":"24","author":"Kakoly","year":"2018","journal-title":"Human Reproduction Update"},{"issue":"1","key":"10.1016\/j.eswa.2023.119532_b0095","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12916-020-01697-5","article-title":"Polycystic ovary syndrome (PCOS) and COVID-19: An overlooked female patient population at potentially higher risk during the COVID-19 pandemic","volume":"18","author":"Kyrou","year":"2020","journal-title":"BMC Medicine"},{"issue":"15","key":"10.1016\/j.eswa.2023.119532_b0100","first-page":"671","article-title":"Diagnostic criteria for polycystic ovary syndrome","volume":"181","author":"Lauritsen","year":"2019","journal-title":"Ugeskrift for Laeger"},{"issue":"6","key":"10.1016\/j.eswa.2023.119532_b0105","first-page":"1","article-title":"Implementing the international evidence-based guideline of assessment and management of polycystic ovary syndrome (PCOS): How to achieve weight loss in overweight and obese women with PCOS ?","volume":"50","author":"Lie","year":"2020","journal-title":"Journal of Gynecology Obstetrics and Human Reproduction"},{"issue":"3","key":"10.1016\/j.eswa.2023.119532_b0110","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.fertnstert.2018.11.034","article-title":"ACC\/AHA 2017 defination of high blood pressure : Implications for women with polycystic ovary syndrome","volume":"111","author":"Marchesan","year":"2019","journal-title":"Fertility and Sterility"},{"issue":"2","key":"10.1016\/j.eswa.2023.119532_b0115","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1530\/EC-20-0527","article-title":"Higher blood pressure in normal weight women with PCOS compared to controls","volume":"10","author":"Mellembakken","year":"2021","journal-title":"Endocrine Connections"},{"key":"10.1016\/j.eswa.2023.119532_b0120","unstructured":"Normalization, Standardization and Normal Distribution. (2021). Towards Data Science. https:\/\/towardsdatascience.com\/normalization-standardization-and-normal-distribution-bfbe14e12df0."},{"issue":"3","key":"10.1016\/j.eswa.2023.119532_b0125","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1111\/cen.13919","article-title":"Improved Menstrual Function in Obese Women with Polycystic Ovary Syndrome after Behavioral Modification Intervention - a Randomized Controlled Trial","volume":"90","author":"Oberg","year":"2019","journal-title":"Clinical Endocrinology"},{"issue":"8","key":"10.1016\/j.eswa.2023.119532_b0130","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1080\/10641963.2020.1772815","article-title":"Increased masked hypertension prevalence in patients with polycystic ovary syndrome (PCOS)","volume":"42","author":"\u00d6zkan","year":"2020","journal-title":"Clinical and Experimental Hypertension"},{"key":"10.1016\/j.eswa.2023.119532_b0135","unstructured":"Pima Indians Diabetes Database. (n.d.). UCI MACHINE LEARNING. https:\/\/www.kaggle.com\/datasets\/uciml\/pima-indians-diabetes-database."},{"key":"10.1016\/j.eswa.2023.119532_b0140","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.procs.2015.04.069","article-title":"Predictive Methodology for Diabetic Data Analysis in Big Data","volume":"50","author":"Saravana","year":"2015","journal-title":"Procedia - Procedia Computer Science"},{"issue":"12","key":"10.1016\/j.eswa.2023.119532_b0145","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s11892-017-0956-2","article-title":"Cardiometabolic Risk in PCOS : More than a Reproductive Disorder","volume":"17","author":"Torchen","year":"2017","journal-title":"Current Diabetes Reports"},{"key":"10.1016\/j.eswa.2023.119532_b0150","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.simpat.2015.03.003","article-title":"A comparison of machine learning techniques for customer churn prediction","volume":"55","author":"Vafeiadis","year":"2015","journal-title":"Simulation Modelling Practice and Theory"},{"issue":"6","key":"10.1016\/j.eswa.2023.119532_b0155","first-page":"942","volume":"26","author":"Wekker","year":"2020","journal-title":"Long-term cardiometabolic disease risk in women with PCOS : a systematic review and meta-analysis."},{"issue":"1","key":"10.1016\/j.eswa.2023.119532_b0160","first-page":"6","article-title":"Polycystic Ovary Syndrome and Risk for Long-Term Diabetes and Dyslipidemia","volume":"23","author":"Wilson","year":"2012","journal-title":"Obstet Gynecol"},{"issue":"8","key":"10.1016\/j.eswa.2023.119532_b0165","doi-asserted-by":"crossref","first-page":"1545","DOI":"10.1210\/js.2019-00078","article-title":"Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment with Emphasis on Adolescent Girls","volume":"3","author":"Witchel","year":"2019","journal-title":"Journal of the Endocrine Society"},{"issue":"2","key":"10.1016\/j.eswa.2023.119532_b0170","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1016\/j.jfranklin.2014.04.021","article-title":"Embedded feature-selection support vector machine for driving pattern recognition","volume":"352","author":"Zhang","year":"2015","journal-title":"Journal of the Franklin Institute"},{"key":"10.1016\/j.eswa.2023.119532_b0175","doi-asserted-by":"crossref","first-page":"626","DOI":"10.3389\/fendo.2021.659268","article-title":"How to Screen and Prevent Metabolic Syndrome in Patients of PCOS Early : Implications From Metabolomics","volume":"12","author":"Zhao","year":"2021","journal-title":"Frontiers in Endocrinology"},{"issue":"2","key":"10.1016\/j.eswa.2023.119532_b0180","doi-asserted-by":"crossref","first-page":"627","DOI":"10.2337\/db20-0800","article-title":"Polycystic ovary syndrome and risk of type 2 diabetes, coronary heart disease, and stroke","volume":"70","author":"Zhu","year":"2021","journal-title":"Diabetes"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423000337?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417423000337?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:21:12Z","timestamp":1714544472000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417423000337"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":36,"alternative-id":["S0957417423000337"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119532","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Early identification of PCOS with commonly known diseases: Obesity, diabetes, high blood pressure and heart disease using machine learning techniques","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2023.119532","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119532"}}