{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T20:36:50Z","timestamp":1726432610947},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.eswa.2022.119350","type":"journal-article","created":{"date-parts":[[2022,12,5]],"date-time":"2022-12-05T17:19:05Z","timestamp":1670260745000},"page":"119350","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Lung CT image synthesis using GANs"],"prefix":"10.1016","volume":"215","author":[{"given":"Jos\u00e9","family":"Mendes","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1681-2436","authenticated-orcid":false,"given":"Tania","family":"Pereira","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3069-2282","authenticated-orcid":false,"given":"Francisco","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Julieta","family":"Frade","sequence":"additional","affiliation":[]},{"given":"Joana","family":"Morgado","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7162-414X","authenticated-orcid":false,"given":"Cl\u00e1udia","family":"Freitas","sequence":"additional","affiliation":[]},{"given":"Eduardo","family":"Negr\u00e3o","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4939-3250","authenticated-orcid":false,"given":"Beatriz Flor","family":"de Lima","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5392-2808","authenticated-orcid":false,"given":"Miguel Correia","family":"da Silva","sequence":"additional","affiliation":[]},{"given":"Ant\u00f3nio J.","family":"Madureira","sequence":"additional","affiliation":[]},{"given":"Isabel","family":"Ramos","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 Lu\u00eds","family":"Costa","sequence":"additional","affiliation":[]},{"given":"Venceslau","family":"Hespanhol","sequence":"additional","affiliation":[]},{"given":"Ant\u00f3nio","family":"Cunha","sequence":"additional","affiliation":[]},{"given":"H\u00e9lder P.","family":"Oliveira","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.119350_b1","series-title":"Medical imaging 2017: Computer-aided diagnosis, vol. 10134","first-page":"952","article-title":"Detection of juxta-pleural lung nodules in computed tomography images","author":"Aresta","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b2","series-title":"34th International conference on machine learning, ICML 2017","article-title":"Wasserstein generative adversarial networks","author":"Arjovsky","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b3","doi-asserted-by":"crossref","DOI":"10.1118\/1.3528204","article-title":"The lung image database consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans","author":"Armato","year":"2011","journal-title":"Medical Physics"},{"key":"10.1016\/j.eswa.2022.119350_b4","series-title":"Pros and cons of GAN evaluation measures: New developments","first-page":"1","author":"Borji","year":"2021"},{"key":"10.1016\/j.eswa.2022.119350_b5","doi-asserted-by":"crossref","DOI":"10.1109\/TMI.2019.2901750","article-title":"Image synthesis in multi-contrast MRI with conditional generative adversarial networks","author":"Dar","year":"2019","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2022.119350_b6","series-title":"Hierarchical autoregressive image models with auxiliary decoders","author":"De\u00a0Fauw","year":"2019"},{"key":"10.1016\/j.eswa.2022.119350_b7","doi-asserted-by":"crossref","DOI":"10.1378\/chest.07-1490","article-title":"Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest","author":"De Torres","year":"2007","journal-title":"Chest"},{"key":"10.1016\/j.eswa.2022.119350_b8","series-title":"On the evaluation of conditional GANs","author":"DeVries","year":"2019"},{"key":"10.1016\/j.eswa.2022.119350_b9","series-title":"Tutorial on variational autoencoders","author":"Doersch","year":"2016"},{"key":"10.1016\/j.eswa.2022.119350_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2018.09.013","article-title":"GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification","author":"Frid-Adar","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.119350_b11","doi-asserted-by":"crossref","DOI":"10.1073\/pnas.1422953112","article-title":"Visual Turing test for computer vision systems","author":"Geman","year":"2015","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"key":"10.1016\/j.eswa.2022.119350_b12","doi-asserted-by":"crossref","DOI":"10.1038\/srep41674","article-title":"Predictive radiogenomics modeling of EGFR mutation status in lung cancer","author":"Gevaert","year":"2017","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2022.119350_b13","series-title":"Advances in neural information processing systems","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.eswa.2022.119350_b14","series-title":"Eurographics workshop on visual computing for biology and medicine","article-title":"Multiparametric magnetic resonance image synthesis using generative adversarial networks","author":"Haarburger","year":"2019"},{"issue":"4","key":"10.1016\/j.eswa.2022.119350_b15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1117\/1.JMI.3.4.044504","article-title":"Lung nodule malignancy classification using only radiologist-quantified image features as inputs to statistical learning algorithms: probing the Lung Image Database Consortium dataset with two statistical learning methods","volume":"3","author":"Hancock","year":"2016","journal-title":"Journal of Medical Imaging"},{"key":"10.1016\/j.eswa.2022.119350_b16","series-title":"Advances in neural information processing systems","article-title":"Gans trained by a two time-scale update rule converge to a local Nash equilibrium","author":"Heusel","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b17","series-title":"Gans trained by a two time-scale update rule converge to a Nash equilibrium","author":"Heusel","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b18","doi-asserted-by":"crossref","unstructured":"Isola,\u00a0P., Zhu,\u00a0J. Y., Zhou,\u00a0T., & Efros,\u00a0A. A. (2017). Image-to-image translation with conditional adversarial networks. In Proceedings - 30th IEEE conference on computer vision and pattern recognition, CVPR 2017. http:\/\/dx.doi.org\/10.1109\/CVPR.2017.632,.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.eswa.2022.119350_b19","series-title":"Advances in neural information processing systems","article-title":"Quality aware generative adversarial networks","author":"Kancharla","year":"2019"},{"key":"10.1016\/j.eswa.2022.119350_b20","series-title":"6th International conference on learning representations, iclr 2018 - conference track proceedings","article-title":"Progressive growing of GANs for improved quality, stability, and variation","author":"Karras","year":"2018"},{"key":"10.1016\/j.eswa.2022.119350_b21","series-title":"Artificial intelligence in medicine","article-title":"GANs for medical image analysis","author":"Kazeminia","year":"2020"},{"key":"10.1016\/j.eswa.2022.119350_b22","doi-asserted-by":"crossref","DOI":"10.2139\/ssrn.3349576","article-title":"Data augmentation using generative adversarial network","author":"Lata","year":"2019","journal-title":"SSRN Electr. J."},{"key":"10.1016\/j.eswa.2022.119350_b23","doi-asserted-by":"crossref","DOI":"10.23876\/j.krcp.2017.36.1.3","article-title":"Medical big data: Promise and challenges","author":"Lee","year":"2017","journal-title":"Kidney Res. Clin. Pract."},{"key":"10.1016\/j.eswa.2022.119350_b24","doi-asserted-by":"crossref","first-page":"14048","DOI":"10.1109\/ACCESS.2018.2808938","article-title":"cC-GAN: A robust transfer-learning framework for HEp-2 specimen image segmentation","volume":"6","author":"Li","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.119350_b25","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1158\/1940-6207.CAPR-10-0151","article-title":"Effect of emphysema on lung cancer risk in smokers: A computed tomography-based assessment","volume":"4","author":"Li","year":"2011","journal-title":"Cancer Prev. Res. (Phila, Pa.)"},{"key":"10.1016\/j.eswa.2022.119350_b26","series-title":"An improved evaluation framework for generative adversarial networks","author":"Liu","year":"2018"},{"key":"10.1016\/j.eswa.2022.119350_b27","series-title":"2017 IEEE International conference on computer vision (ICCV)","first-page":"2813","article-title":"Least squares generative adversarial networks","author":"Mao","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b28","series-title":"CGAN","author":"Mirza","year":"2014"},{"key":"10.1016\/j.eswa.2022.119350_b29","series-title":"Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)","article-title":"Medical image synthesis with context-aware generative adversarial networks","author":"Nie","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b30","series-title":"34th International conference on machine learning, ICML 2017","article-title":"Conditional image synthesis with auxiliary classifier gans","author":"Odena","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b31","doi-asserted-by":"crossref","DOI":"10.3390\/jcm10010118","article-title":"Comprehensive perspective for lung cancer characterisation based on AI solutions using CT images","author":"Pereira","year":"2020","journal-title":"J. Clin. Med."},{"key":"10.1016\/j.eswa.2022.119350_b32","series-title":"Deep generative models, and data augmentation, labelling, and imperfections","first-page":"67","article-title":"Ct-SGAN: computed tomography synthesis GAN","author":"Pesaranghader","year":"2021"},{"key":"10.1016\/j.eswa.2022.119350_b33","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-020-60202-3","article-title":"Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS","author":"Pinheiro","year":"2020","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2022.119350_b34","series-title":"4th International conference on learning representations, ICLR 2016 - conference track proceedings","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","author":"Radford","year":"2016"},{"key":"10.1016\/j.eswa.2022.119350_b35","series-title":"ImageNet large scale visual recognition challenge","author":"Russakovsky","year":"2014"},{"key":"10.1016\/j.eswa.2022.119350_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.acra.2019.12.024","article-title":"Creating artificial images for radiology applications using generative adversarial networks (GANs)\u2013A systematic review","author":"Sorin","year":"2020","journal-title":"Academic Radiol."},{"key":"10.1016\/j.eswa.2022.119350_b37","series-title":"Reduced lung-cancer mortality with low-dose computed tomographic screening","author":"Team","year":"2011"},{"key":"10.1016\/j.eswa.2022.119350_b38","series-title":"Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018","author":"The International Agency for Research on Cancer (IARC) report","year":"2018"},{"key":"10.1016\/j.eswa.2022.119350_b39","series-title":"Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)","article-title":"Deep MR to CT synthesis using unpaired data","author":"Wolterink","year":"2017"},{"key":"10.1016\/j.eswa.2022.119350_b40","series-title":"Semantic image inpainting with perceptual and contextual losses","author":"Yeh","year":"2016"},{"key":"10.1016\/j.eswa.2022.119350_b41","article-title":"COPD prevalence is increased in lung cancer, independent of age, sex and smoking history","author":"Young","year":"2008","journal-title":"European Respiratory Journal"},{"key":"10.1016\/j.eswa.2022.119350_b42","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0B., Zhou,\u00a0L., Wang,\u00a0L., Fripp,\u00a0J., & Bourgeat,\u00a0P. (2018). 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation. In Proceedings - International symposium on biomedical imaging. http:\/\/dx.doi.org\/10.1109\/ISBI.2018.8363653.","DOI":"10.1109\/ISBI.2018.8363653"},{"issue":"4","key":"10.1016\/j.eswa.2022.119350_b43","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Zhou\u00a0Wang","year":"2004","journal-title":"IEEE Transactions on Image Processing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422023685?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422023685?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T06:13:30Z","timestamp":1714544010000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422023685"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":43,"alternative-id":["S0957417422023685"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.119350","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Lung CT image synthesis using GANs","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.119350","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"119350"}}