{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T22:06:02Z","timestamp":1744841162087},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.eswa.2022.118710","type":"journal-article","created":{"date-parts":[[2022,8,30]],"date-time":"2022-08-30T16:23:39Z","timestamp":1661876619000},"page":"118710","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":89,"special_numbering":"C","title":["Social media-based COVID-19 sentiment classification model using Bi-LSTM"],"prefix":"10.1016","volume":"212","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5033-5242","authenticated-orcid":false,"given":"Mohamed","family":"Arbane","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5146-2326","authenticated-orcid":false,"given":"Rachid","family":"Benlamri","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1565-0594","authenticated-orcid":false,"given":"Youcef","family":"Brik","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4011-1023","authenticated-orcid":false,"given":"Ayman Diyab","family":"Alahmar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.118710_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2019.123094","article-title":"Sentiment classification within online social media using whale optimization algorithm and social impact theory based optimization","volume":"540","author":"Akyol","year":"2020","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"6","key":"10.1016\/j.eswa.2022.118710_b2","first-page":"1943","article-title":"Sentiment analysis in social networks using social spider optimization algorithm","volume":"28","author":"Baydogan","year":"2021","journal-title":"Tehni\u010dki Vjesnik"},{"key":"10.1016\/j.eswa.2022.118710_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.chb.2021.106716","article-title":"Machine learning techniques and older adults processing of online information and misinformation: a covid 19 study","volume":"119","author":"Choudrie","year":"2021","journal-title":"Computers in Human Behavior"},{"issue":"6","key":"10.1016\/j.eswa.2022.118710_b4","doi-asserted-by":"crossref","first-page":"1431","DOI":"10.1007\/s10796-021-10152-6","article-title":"Applying and understanding an advanced, novel deep learning approach: A Covid 19, text based, emotions analysis study","volume":"23","author":"Choudrie","year":"2021","journal-title":"Information Systems Frontiers"},{"key":"10.1016\/j.eswa.2022.118710_b5","doi-asserted-by":"crossref","first-page":"48364","DOI":"10.1109\/ACCESS.2021.3068313","article-title":"Online extremism detection: A systematic literature review with emphasis on datasets, classification techniques, validation methods, and tools","volume":"9","author":"Gaikwad","year":"2021","journal-title":"IEEE Access"},{"issue":"02","key":"10.1016\/j.eswa.2022.118710_b6","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1142\/S0218488598000094","article-title":"The vanishing gradient problem during learning recurrent neural nets and problem solutions","volume":"6","author":"Hochreiter","year":"1998","journal-title":"International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems"},{"issue":"8","key":"10.1016\/j.eswa.2022.118710_b7","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.118710_b8","doi-asserted-by":"crossref","first-page":"181074","DOI":"10.1109\/ACCESS.2020.3027350","article-title":"Cross-cultural polarity and emotion detection using sentiment analysis and deep learning on COVID-19 related tweets","volume":"8","author":"Imran","year":"2020","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.eswa.2022.118710_b9","doi-asserted-by":"crossref","first-page":"2733","DOI":"10.1109\/JBHI.2020.3001216","article-title":"Deep sentiment classification and topic discovery on novel coronavirus or covid-19 online discussions: Nlp using lstm recurrent neural network approach","volume":"24","author":"Jelodar","year":"2020","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2022.118710_b10","doi-asserted-by":"crossref","first-page":"85401","DOI":"10.1109\/ACCESS.2019.2925059","article-title":"A survey of sentiment analysis based on transfer learning","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.118710_b11","series-title":"Global sentiment analysis of COVID-19 tweets over time","author":"Mansoor","year":"2020"},{"key":"10.1016\/j.eswa.2022.118710_b12","series-title":"Coronavirus tweets NLP - Text classification, version 1","author":"Miglani","year":"2020"},{"key":"10.1016\/j.eswa.2022.118710_b13","doi-asserted-by":"crossref","DOI":"10.1109\/TCSS.2021.3051189","article-title":"Covidsenti: A large-scale benchmark Twitter data set for COVID-19 sentiment analysis","author":"Naseem","year":"2021","journal-title":"IEEE Transactions on Computational Social Systems"},{"key":"10.1016\/j.eswa.2022.118710_b14","first-page":"1","article-title":"Social media sentiment analysis based on COVID-19","author":"Nemes","year":"2020","journal-title":"Journal of Information and Telecommunication"},{"key":"10.1016\/j.eswa.2022.118710_b15","series-title":"Twitter by the numbers- stats, demographics and fun facts","author":"Omnicore","year":"2021"},{"key":"10.1016\/j.eswa.2022.118710_b16","series-title":"Proceedings of the 2014 conference on empirical methods in natural language processing","first-page":"1532","article-title":"GloVe: Global vectors for word representation","author":"Pennington","year":"2014"},{"issue":"2","key":"10.1016\/j.eswa.2022.118710_b17","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0245909","article-title":"A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis","volume":"16","author":"Rustam","year":"2021","journal-title":"Plos One"},{"issue":"6","key":"10.1016\/j.eswa.2022.118710_b18","doi-asserted-by":"crossref","first-page":"314","DOI":"10.3390\/info11060314","article-title":"Covid-19 public sentiment insights and machine learning for tweets classification","volume":"11","author":"Samuel","year":"2020","journal-title":"Information"},{"issue":"11","key":"10.1016\/j.eswa.2022.118710_b19","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1109\/78.650093","article-title":"Bidirectional recurrent neural networks","volume":"45","author":"Schuster","year":"1997","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.eswa.2022.118710_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.physd.2019.132306","article-title":"Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network","volume":"404","author":"Sherstinsky","year":"2020","journal-title":"Physica D: Nonlinear Phenomena"},{"key":"10.1016\/j.eswa.2022.118710_b21","series-title":"Multi-channel CNN to classify nepali covid-19 related tweets using hybrid features","author":"Sitaula","year":"2022"},{"key":"10.1016\/j.eswa.2022.118710_b22","series-title":"Coronavirus (covid19) tweets, version 19","author":"Smith","year":"2020"},{"issue":"1","key":"10.1016\/j.eswa.2022.118710_b23","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2022.118710_b24","series-title":"Proceedings of 2nd international conference on advanced computing and software engineering","first-page":"91","article-title":"A review towards the sentiment analysis techniques for the analysis of twitter data","author":"Tyagi","year":"2019"},{"key":"10.1016\/j.eswa.2022.118710_b25","doi-asserted-by":"crossref","first-page":"127985","DOI":"10.1109\/ACCESS.2021.3111527","article-title":"Explainable AI for multimodal credibility analysis: Case study of online beauty health (mis)-information","volume":"9","author":"Wagle","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.118710_b26","series-title":"Twitter sees record number of users during pandemic, but advertising sales slow","author":"Washington-Post","year":"2021"},{"key":"10.1016\/j.eswa.2022.118710_b27","series-title":"International conference on intelligent computing","first-page":"393","article-title":"Multi-class text classification model based on weighted word vector and bilstm-attention optimization","author":"Wu","year":"2021"},{"key":"10.1016\/j.eswa.2022.118710_b28","doi-asserted-by":"crossref","first-page":"51522","DOI":"10.1109\/ACCESS.2019.2909919","article-title":"Sentiment analysis of comment texts based on BiLSTM","volume":"7","author":"Xu","year":"2019","journal-title":"IEEE Access"},{"issue":"Special","key":"10.1016\/j.eswa.2022.118710_b29","first-page":"35","article-title":"A new plant intelligence-based method for sentiment analysis: Chaotic sunflower optimization","author":"Yildirim","year":"2021","journal-title":"Journal of Computer Science"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422017353?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422017353?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:39:03Z","timestamp":1714541943000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422017353"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":29,"alternative-id":["S0957417422017353"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118710","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Social media-based COVID-19 sentiment classification model using Bi-LSTM","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118710","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118710"}}