{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:43:29Z","timestamp":1732041809147},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.eswa.2022.118672","type":"journal-article","created":{"date-parts":[[2022,8,28]],"date-time":"2022-08-28T15:49:18Z","timestamp":1661701758000},"page":"118672","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["An attentive and adaptive 3D CNN for automatic pulmonary nodule detection in CT image"],"prefix":"10.1016","volume":"211","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6559-9507","authenticated-orcid":false,"given":"Dandan","family":"Zhao","sequence":"first","affiliation":[]},{"given":"Yang","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1404-1378","authenticated-orcid":false,"given":"Hongpeng","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Zhiqiang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.eswa.2022.118672_b1","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1118\/1.3528204","article-title":"The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans","volume":"38","author":"Armato\u00a0III","year":"2011","journal-title":"Medical Physics"},{"issue":"6","key":"10.1016\/j.eswa.2022.118672_b2","first-page":"394","article-title":"Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries","volume":"68","author":"Bray","year":"2018","journal-title":"CA: A Cancer Journal for Clinicians"},{"issue":"1","key":"10.1016\/j.eswa.2022.118672_b3","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.media.2015.08.001","article-title":"Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box","volume":"26","author":"Ciompi","year":"2015","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2022.118672_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2022.107911","article-title":"A novel method for lung nodule detection in computed tomography scans based on Boolean equations and vector of filters techniques","volume":"100","author":"de Mesquita","year":"2022","journal-title":"Computers and Electrical Engineering"},{"key":"10.1016\/j.eswa.2022.118672_b5","series-title":"International conference on medical image computing and computer-assisted intervention","first-page":"559","article-title":"Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks","author":"Ding","year":"2017"},{"key":"10.1016\/j.eswa.2022.118672_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102696","article-title":"Combining gabor energy with equilibrium optimizer algorithm for multi-modality medical image fusion","volume":"68","author":"Dinh","year":"2021","journal-title":"Biomedical Signal Processing and Control"},{"key":"10.1016\/j.eswa.2022.118672_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114576","article-title":"A novel approach based on grasshopper optimization algorithm for medical image fusion","volume":"171","author":"Dinh","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102536","article-title":"A novel approach based on three-scale image decomposition and marine predators algorithm for multi-modal medical image fusion","volume":"67","author":"Dinh","year":"2021","journal-title":"Biomedical Signal Processing and Control"},{"issue":"7","key":"10.1016\/j.eswa.2022.118672_b9","doi-asserted-by":"crossref","first-page":"1558","DOI":"10.1109\/TBME.2016.2613502","article-title":"Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection","volume":"64","author":"Dou","year":"2016","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"7","key":"10.1016\/j.eswa.2022.118672_b10","doi-asserted-by":"crossref","first-page":"1558","DOI":"10.1109\/TBME.2016.2613502","article-title":"Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection","volume":"64","author":"Dou","year":"2016","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2022.118672_b11","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.compbiomed.2018.10.011","article-title":"Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs","volume":"103","author":"Gu","year":"2018","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2022.118672_b12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026\u20131034).","DOI":"10.1109\/ICCV.2015.123"},{"issue":"7","key":"10.1016\/j.eswa.2022.118672_b13","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.118672_b14","series-title":"International conference on machine learning","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"issue":"2","key":"10.1016\/j.eswa.2022.118672_b15","doi-asserted-by":"crossref","first-page":"374","DOI":"10.1016\/j.media.2013.12.001","article-title":"Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images","volume":"18","author":"Jacobs","year":"2014","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2022.118672_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114848","article-title":"Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images","volume":"176","author":"Jin","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b17","series-title":"International conference on image analysis and recognition","first-page":"378","article-title":"Pulmonary-nodule detection using an ensemble of 3D SE-ResNet18 and DPN68 models","author":"Katz","year":"2020"},{"key":"10.1016\/j.eswa.2022.118672_b18","article-title":"Lightgbm: A highly efficient gradient boosting decision tree","volume":"30","author":"Ke","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.eswa.2022.118672_b19","series-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"key":"10.1016\/j.eswa.2022.118672_b20","series-title":"Deep learning for lung cancer detection: tackling the kaggle data science bowl 2017 challenge","author":"Kuan","year":"2017"},{"key":"10.1016\/j.eswa.2022.118672_b21","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Doll\u00e1r, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980\u20132988).","DOI":"10.1109\/ICCV.2017.324"},{"issue":"4","key":"10.1016\/j.eswa.2022.118672_b22","doi-asserted-by":"crossref","first-page":"1477","DOI":"10.1118\/1.4907970","article-title":"Large scale validation of the M5L lung CAD on heterogeneous CT datasets","volume":"42","author":"Lopez\u00a0Torres","year":"2015","journal-title":"Medical Physics"},{"key":"10.1016\/j.eswa.2022.118672_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115469","article-title":"A multi-task CNN approach for lung nodule malignancy classification and characterization","volume":"184","author":"Marques","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b24","doi-asserted-by":"crossref","DOI":"10.1109\/TPAMI.2021.3065086","article-title":"SANet: A slice-aware network for pulmonary nodule detection","author":"Mei","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"3","key":"10.1016\/j.eswa.2022.118672_b25","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1038\/s41571-020-00432-6","article-title":"Lung cancer LDCT screening and mortality reduction\u2014evidence, pitfalls and future perspectives","volume":"18","author":"Oudkerk","year":"2021","journal-title":"Nature Reviews Clinical Oncology"},{"key":"10.1016\/j.eswa.2022.118672_b26","doi-asserted-by":"crossref","first-page":"123134","DOI":"10.1109\/ACCESS.2021.3109860","article-title":"Classifier ensemble based on computed tomography attenuation patterns for computer-aided detection system","volume":"9","author":"Pereira","year":"2021","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.eswa.2022.118672_b27","doi-asserted-by":"crossref","first-page":"2080","DOI":"10.1109\/JBHI.2018.2879449","article-title":"3-D convolutional neural networks for automatic detection of pulmonary nodules in chest CT","volume":"23","author":"Pezeshk","year":"2018","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2022.118672_b28","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779\u2013788).","DOI":"10.1109\/CVPR.2016.91"},{"key":"10.1016\/j.eswa.2022.118672_b29","doi-asserted-by":"crossref","unstructured":"Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263\u20137271).","DOI":"10.1109\/CVPR.2017.690"},{"key":"10.1016\/j.eswa.2022.118672_b30","series-title":"Yolov3: An incremental improvement","author":"Redmon","year":"2018"},{"key":"10.1016\/j.eswa.2022.118672_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114259","article-title":"A hybrid CAD system for lung nodule detection using CT studies based in soft computing","volume":"168","author":"Rey","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"5","key":"10.1016\/j.eswa.2022.118672_b32","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1109\/TMI.2016.2536809","article-title":"Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks","volume":"35","author":"Setio","year":"2016","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"10","key":"10.1016\/j.eswa.2022.118672_b33","doi-asserted-by":"crossref","first-page":"5642","DOI":"10.1118\/1.4929562","article-title":"Automatic detection of large pulmonary solid nodules in thoracic CT images","volume":"42","author":"Setio","year":"2015","journal-title":"Medical Physics"},{"key":"10.1016\/j.eswa.2022.118672_b34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2017.06.015","article-title":"Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge","volume":"42","author":"Setio","year":"2017","journal-title":"Medical Image Analysis"},{"issue":"1","key":"10.1016\/j.eswa.2022.118672_b35","first-page":"7","article-title":"Cancer statistics, 2019","volume":"69","author":"Siegel","year":"2019","journal-title":"CA: A Cancer Journal for Clinicians"},{"issue":"1","key":"10.1016\/j.eswa.2022.118672_b36","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1164\/rccm.201410-1777CI","article-title":"Lung cancer screening","volume":"191","author":"Tanoue","year":"2015","journal-title":"American Journal of Respiratory and Critical Care Medicine"},{"issue":"3","key":"10.1016\/j.eswa.2022.118672_b37","first-page":"179","article-title":"An adaptive preprocessing of lung CT images with various filters for better enhancement","volume":"7","author":"Vijaya","year":"2014","journal-title":"Academic Journal of Cancer Research"},{"key":"10.1016\/j.eswa.2022.118672_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114574","article-title":"Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform","volume":"171","author":"Wang","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114574","article-title":"Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform","volume":"171","author":"Wang","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b40","doi-asserted-by":"crossref","first-page":"46033","DOI":"10.1109\/ACCESS.2019.2908195","article-title":"Pulmonary nodule detection in volumetric chest CT scans using CNNs-based nodule-size-adaptive detection and classification","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.118672_b41","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.patcog.2018.07.031","article-title":"Automated pulmonary nodule detection in CT images using deep convolutional neural networks","volume":"85","author":"Xie","year":"2019","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2022.118672_b42","article-title":"Efficient active contour model for medical image segmentation and correction based on edge and region information","author":"Yang","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118672_b43","first-page":"1","article-title":"An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection","author":"Yuan","year":"2021","journal-title":"International Journal of Computer Assisted Radiology and Surgery"},{"key":"10.1016\/j.eswa.2022.118672_b44","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/ACCESS.2021.3137317","article-title":"Pulmonary nodule detection using 3-D residual U-net oriented context-guided attention and multi-branch classification network","volume":"10","author":"Yuan","year":"2022","journal-title":"Ieee Access"},{"key":"10.1016\/j.eswa.2022.118672_b45","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.compbiomed.2018.10.033","article-title":"Automatic nodule detection for lung cancer in CT images: A review","volume":"103","author":"Zhang","year":"2018","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2022.118672_b46","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.neucom.2018.08.022","article-title":"NODULe: Combining constrained multi-scale LoG filters with densely dilated 3D deep convolutional neural network for pulmonary nodule detection","volume":"317","author":"Zhang","year":"2018","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.eswa.2022.118672_b47","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1109\/TMI.2019.2935553","article-title":"Automatic pulmonary nodule detection in CT scans using convolutional neural networks based on maximum intensity projection","volume":"39","author":"Zheng","year":"2019","journal-title":"IEEE Transactions on Medical Imaging"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422017079?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422017079?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,5]],"date-time":"2023-12-05T20:51:44Z","timestamp":1701809504000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422017079"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":47,"alternative-id":["S0957417422017079"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118672","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An attentive and adaptive 3D CNN for automatic pulmonary nodule detection in CT image","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118672","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118672"}}