{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T10:21:29Z","timestamp":1742379689588},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.eswa.2022.118645","type":"journal-article","created":{"date-parts":[[2022,8,23]],"date-time":"2022-08-23T02:20:48Z","timestamp":1661221248000},"page":"118645","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["ATM cash demand forecasting in an Indian bank with chaos and hybrid deep learning networks"],"prefix":"10.1016","volume":"211","author":[{"given":"Vangala","family":"Sarveswararao","sequence":"first","affiliation":[]},{"given":"Vadlamani","family":"Ravi","sequence":"additional","affiliation":[]},{"given":"Yelleti","family":"Vivek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.118645_b0005","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.cor.2018.05.020","article-title":"Soft computing hybrids for FOREX rate prediction: A comprehensive review","volume":"99","author":"Pradeepkumar","year":"2018","journal-title":"Computers & Operations Research"},{"key":"10.1016\/j.eswa.2022.118645_b0010","unstructured":"Venkatesh, K., Ravi, V., Kumar D.N. (2014). Chaotic time series analysis with neural networks to forecast cash demand in ATMs, in:2014 IEEE Int. Conf. Comput. Intell. Comput. Res., Coimbatore, Tamilnadu, India."},{"key":"10.1016\/j.eswa.2022.118645_b0015","unstructured":"Crone, S. (2008). Results of the NN5 time series forecasting competition, in: WCCI 2008, IEEE World Congr. Comput. Intell., Hong Kong, China."},{"issue":"672\u2013688","key":"10.1016\/j.eswa.2022.118645_b0020","article-title":"Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition","volume":"27","author":"Andrawis","year":"2011","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2022.118645_b0025","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/j.ejor.2013.07.027","article-title":"Cash demand forecasting in ATMs by clustering and neural networks","volume":"232","author":"Venkatesh","year":"2014","journal-title":"European Journal of Operational Research"},{"key":"10.1016\/j.eswa.2022.118645_bib303","series-title":"Time Series Analysis and Its Applications With R Examples","author":"Shumway","year":"2017"},{"key":"10.1016\/j.eswa.2022.118645_b0030","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.eswa.2022.118645_b0035","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2022.118645_b0040","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1109\/78.388860","article-title":"Wavelet neural networks for function learning","volume":"43","author":"Walter","year":"1995","journal-title":"IEEE Transactions on Signal Processing"},{"issue":"3","key":"10.1016\/j.eswa.2022.118645_bib302","first-page":"43","article-title":"The group method of data handling- a rival of the method of stochastic approximation.","volume":"13","author":"Ivakhnenko","year":"1966","journal-title":"Soviet Automatic Control"},{"key":"10.1016\/j.eswa.2022.118645_b0045","first-page":"404","article-title":"An approach to improve forecasting cash demand at ATMs using fuzzy logic","volume":"14","author":"Javanmard","year":"2016","journal-title":"International Journal of Computer Science and Information Security"},{"key":"10.1016\/j.eswa.2022.118645_b0050","doi-asserted-by":"crossref","first-page":"13","DOI":"10.5120\/ijca2016907770","article-title":"An artificial intelligence ATM forecasting system for hybrid neural networks","volume":"133","author":"Bhandari","year":"2016","journal-title":"International Journal of Computers and Applications"},{"key":"10.1016\/j.eswa.2022.118645_b0055","doi-asserted-by":"crossref","unstructured":"Jadwal, P.K., Jain, S., Gupta, U., Khanna, P. (2017). K-Means clustering with neural networks for ATM cash repository prediction, in: Int. Conf. Inf. Commun. Technol. Intell. Syst., Ahmedabad, India, (pp. 588\u2013596).","DOI":"10.1007\/978-3-319-63673-3_71"},{"key":"10.1016\/j.eswa.2022.118645_b0060","doi-asserted-by":"crossref","first-page":"3733","DOI":"10.1007\/s13369-018-3647-7","article-title":"The improvement of forecasting ATMs cash demand of IranBanking network using convolutional neural network","volume":"44","author":"Arabani","year":"2019","journal-title":"Arab. J. Sci. Eng."},{"key":"10.1016\/j.eswa.2022.118645_b0065","doi-asserted-by":"crossref","unstructured":"Rafi, M., Wahab, M.T., Khan, M.B., Raza, H. (2020). ATM Cash Prediction Using Time SeriesApproach, in: 2020 3rd Int. Conf. Comput. Math. Eng. Technol., Sukkur, Pakistan, (pp. 1\u20136).","DOI":"10.1109\/iCoMET48670.2020.9073937"},{"key":"10.1016\/j.eswa.2022.118645_b0070","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.swevo.2017.05.003","article-title":"Financial time series prediction using hybrids of chaostheory, multi-layer perceptron and multi-objective evolutionary algorithms","volume":"36","author":"Ravi","year":"2017","journal-title":"Swarm and Evolutionary Computation"},{"key":"10.1016\/j.eswa.2022.118645_b0075","doi-asserted-by":"crossref","unstructured":"Pradeepkumar, D., Ravi, V. (2014). Forex rate prediction using chaos, neural network and particle swarm optimization, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, (pp. 363\u2013375).","DOI":"10.1007\/978-3-319-11897-0_42"},{"key":"10.1016\/j.eswa.2022.118645_b0080","doi-asserted-by":"crossref","unstructured":"Pradeepkumar, D., Ravi, V. (2016). FOREX Rate prediction using Chaos and Quantile Regression Random Forest, in: 2016 3rd Int. Conf. Recent Adv. Inf. Technol. RAIT 2016, Institute of Electrical and Electronics Engineers Inc., (pp. 517\u2013522).","DOI":"10.1109\/RAIT.2016.7507954"},{"key":"10.1016\/j.eswa.2022.118645_b0085","doi-asserted-by":"crossref","unstructured":"Pradeepkumar, D., Ravi, V. (2017). FOREX rate prediction: A hybrid approach using chaos theory and multivariate adaptive regression splines, in: Adv. Intell. Syst. Comput., Springer Verlag, (pp. 219\u2013227). 10.1007\/978-981-10-3153-3_22.","DOI":"10.1007\/978-981-10-3153-3_22"},{"key":"10.1016\/j.eswa.2022.118645_b0090","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, A.M., Zimmermann, H.G. (2006). Recurrent neural networks are universal approximators, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, Athens, Greece, (pp. 632\u2013640). 10.1007\/11840817_66.","DOI":"10.1007\/11840817_66"},{"key":"10.1016\/j.eswa.2022.118645_b0095","doi-asserted-by":"crossref","unstructured":"Cho, K., Van Merri\u00ebnboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation, in: EMNLP 2014 - 2014 Conf. Empir. Methods Nat. Lang. Process. Proc. Conf., Association for Computational Linguistics (ACL), (pp. 1724\u20131734). 10.3115\/v1\/d14-1179.","DOI":"10.3115\/v1\/D14-1179"},{"issue":"2","key":"10.1016\/j.eswa.2022.118645_bib301","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/0304-4076(74)90034-7","article-title":"Spurious regressions in econometrics","volume":"2","author":"Gragner","year":"1974","journal-title":"Journal of Econometrics"},{"key":"10.1016\/j.eswa.2022.118645_b0100","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.118645_b0105","doi-asserted-by":"crossref","unstructured":"Tian, Y., Pan, L. (2015). Predicting Short-Term Traffic Flow by Long Short-Term Memory Recurrent Neural Network, in: 2015 IEEE Int. Conf. Smart City\/SocialCom\/SustainCom, Chengdu, China, (pp. 153\u2013158). 10.1109\/SmartCity.2015.63.","DOI":"10.1109\/SmartCity.2015.63"},{"key":"10.1016\/j.eswa.2022.118645_b0110","doi-asserted-by":"crossref","unstructured":"Duan, Y., Lv, Y., Wang, F.Y. (2016). Travel time prediction with LSTM neural network, in: IEEE Conf. Intell. Transp. Syst. Proceedings, ITSC, Rio de Janeiro, Brazil, (pp. 1053\u20131058).","DOI":"10.1109\/ITSC.2016.7795686"},{"key":"10.1016\/j.eswa.2022.118645_b0115","unstructured":"Lee, C.Y., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z. (2015). Deeply-Supervised Nets, in: Artif. Intell. Stat., (pp. 562\u2013570)."},{"key":"10.1016\/j.eswa.2022.118645_b0120","unstructured":"LeCun, Y., Bengio, Y. (1998). Convolutional Networks for Images, Speech, and Time-Series, Handb. Brain Theory Neural Networks. 3361."},{"key":"10.1016\/j.eswa.2022.118645_b0125","unstructured":"Papadopoulos, K. (2018). SeriesNet: A Dilated Causal Convolutional Neural Network for Forecasting, https:\/\/github.com\/kristpapadopoulos\/seriesnet (accessed December 5, 2019)."},{"key":"10.1016\/j.eswa.2022.118645_b0130","unstructured":"van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K. (2016) WaveNet: A Generative Model for Raw Audio. http:\/\/arxiv.org\/abs\/1609.03499 (accessed December 5, 2019)."},{"key":"10.1016\/j.eswa.2022.118645_b0135","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1175\/1520-0469(1963)020<0130:DNF>2.0.CO;2","article-title":"Deterministic nonperiodic flow","volume":"20","author":"Lorenz","year":"1963","journal-title":"J. Atmos. Sci."},{"key":"10.1016\/j.eswa.2022.118645_b0140","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.advwatres.2010.01.001","article-title":"Nonlinear ensemble prediction of chaotic daily rainfall","volume":"33","author":"Dhanya","year":"2010","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.eswa.2022.118645_b0145","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1103\/PhysRevLett.45.712","article-title":"Geometry from a time series","volume":"45","author":"Packard","year":"1980","journal-title":"Phys. Rev. Lett."},{"key":"10.1016\/j.eswa.2022.118645_b0150","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/0167-2789(93)90009-P","article-title":"A practical method for calculating largest Lyapunov exponents from small data sets","volume":"65","author":"Rosenstein","year":"1993","journal-title":"Physica D: Nonlinear Phenomena"},{"key":"10.1016\/j.eswa.2022.118645_b0155","doi-asserted-by":"crossref","unstructured":"Lyapunov, A. (1907). Probl\u00e8me g\u00e9n\u00e9ral de la stabilit\u00e9 du mouvement, in: Ann. La Fac. Des Sci. Toulouse Math\u00e9matiques, (pp. 203\u2013474).","DOI":"10.5802\/afst.246"},{"key":"10.1016\/j.eswa.2022.118645_b0160","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S0167-2789(97)00118-8","article-title":"Practical method for determining the minimum embedding dimension of a scalar time series","volume":"110","author":"Cao","year":"1997","journal-title":"Physica D: Nonlinear Phenomena"},{"key":"10.1016\/j.eswa.2022.118645_b0165","unstructured":"Drucker, H. Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V. (1997). Support Vector Regression Machines, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), Adv. Neural Inf. Process. Syst. 9, MIT Press, (pp. 155\u2013161)."},{"key":"10.1016\/j.eswa.2022.118645_b0170","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2022.118645_b0175","unstructured":"Ho, T.K. (1995). Random decision forests, in: Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, Montreal, Canada. 10.1109\/ICDAR.1995.598994."},{"key":"10.1016\/j.eswa.2022.118645_b0180","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C. (2016). XGBoost: A scalable tree boosting system, in: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Francisco, California, USA, (pp. 785\u2013794).","DOI":"10.1145\/2939672.2939785"},{"key":"10.1016\/j.eswa.2022.118645_b0185","doi-asserted-by":"crossref","unstructured":"Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine, Ann. Stat. (pp. 1189\u20131232).","DOI":"10.1214\/aos\/1013203451"},{"key":"10.1016\/j.eswa.2022.118645_b0190","doi-asserted-by":"crossref","unstructured":"Mushtaq, R. (2012). Augmented Dickey Fuller Test, SSRN Electron. J. Lawrance, A.J. (1991). Directionality and Reversibility in Time Series, Int. Stat. Rev.\/Rev. Int. Stat. 59. 10.2307\/1403575.","DOI":"10.2139\/ssrn.1911068"},{"key":"10.1016\/j.eswa.2022.118645_b0195","doi-asserted-by":"crossref","unstructured":"Theil, H. (1966). Applied economic forecasting, North-Holland Pub. Co, Amsterdam. Granger, C.W.J., Newbold, P. (1973). Some comments on the evaluation of economic forecasts, Appl. Econ. 5 (pp. 35\u201347). 10.1080\/00036847300000003.","DOI":"10.1080\/00036847300000003"},{"key":"10.1016\/j.eswa.2022.118645_b0200","doi-asserted-by":"crossref","first-page":"444","DOI":"10.1177\/002224377301000413","article-title":"Theil\u2019s forecast accuracy coefficient: A clarification","volume":"10","author":"Bliemel","year":"1973","journal-title":"J. Mark. Res."},{"key":"10.1016\/j.eswa.2022.118645_b0205","doi-asserted-by":"crossref","unstructured":"Cho, K., van, M.B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio. Y. (2014). \u201cLearning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation\u201d. arXiv:1406.1078.","DOI":"10.3115\/v1\/D14-1179"},{"key":"10.1016\/j.eswa.2022.118645_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106181","article-title":"Financial time series forecasting with deep learning: A systematic literature review: 2005\u20132019","volume":"90","author":"Sezer","year":"2020","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2022.118645_b0215","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1186\/s11782-020-00082-6","article-title":"Deep learning in finance and banking: A literature review and classification","volume":"14","author":"Huang","year":"2020","journal-title":"Frontiers of Business Research in China"},{"key":"10.1016\/j.eswa.2022.118645_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.115537","article-title":"Applications of deep learning in stock marketing prediction: Recent progress","author":"Jiang","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118645_b0230","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106384","article-title":"Deep learning for financial applications: A survey","author":"Ozbayoglu","year":"2020","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2022.118645_b0235","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105596","article-title":"A review of deep learning with special emphasis on architectures, applications and recent trends","author":"Sengupta","year":"2020","journal-title":"Knowledge-Based Systems"},{"issue":"8","key":"10.1016\/j.eswa.2022.118645_b0240","doi-asserted-by":"crossref","first-page":"7067","DOI":"10.1016\/j.eswa.2012.01.039","article-title":"A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition","volume":"39","author":"Taieb","year":"2012","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118645_b0245","series-title":"The 2010 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"On utilizing self-organizing fuzzy neural networks for financial forecasts in the NN5 forecasting competition","author":"Coyle","year":"2010"},{"key":"10.1016\/j.eswa.2022.118645_b0250","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10618-005-0039-x","article-title":"Characteristic-based clustering for time series data","volume":"13","author":"Wang","year":"2006","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.eswa.2022.118645_b0255","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1002\/for.838","article-title":"Forecasting daily foreign exchange rates using genetically optimized neural networks","volume":"21","author":"Nag","year":"2002","journal-title":"Journal of Forecasting"},{"key":"10.1016\/j.eswa.2022.118645_b0260","article-title":"FFORMA: Feature-based forecast model averaging","volume":"36","author":"Montero-Manso","year":"2019","journal-title":"International Journal of Forecasting."},{"key":"10.1016\/j.eswa.2022.118645_b0265","doi-asserted-by":"crossref","unstructured":"Makridakis, S., Spiliotis, E., Assimakopoulos, V. (2018). The M4 Competition: Results, findings, conclusion and way forward, International Journal of Forecasting, 34(4), 802-808, 10.1016\/j.ijforecast.2018.06.001.","DOI":"10.1016\/j.ijforecast.2018.06.001"},{"key":"10.1016\/j.eswa.2022.118645_b0270","doi-asserted-by":"crossref","unstructured":"Yankov, D., DeCoste, D., Keogh, E. (2006). Ensembles of nearest neighbor forecasts. Machine learning: ECML 2006. Lecture Notes in Computer Science, vol 4212. Springer, Berlin, Heidelberg. 10.1007\/11871842_51.","DOI":"10.1007\/11871842_51"},{"issue":"3","key":"10.1016\/j.eswa.2022.118645_b0275","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1016\/j.ijforecast.2011.04.001","article-title":"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction","volume":"27","author":"Crone","year":"2011","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2022.118645_b0280","doi-asserted-by":"crossref","unstructured":"Manoj, T., Kumar, D. (2018). A hybrid financial trading support system using multi-category classifiers and random forest, Applied Soft Computing, 67, pp. 337-349, 10.1016\/j.asoc.2018.03.006.","DOI":"10.1016\/j.asoc.2018.03.006"},{"key":"10.1016\/j.eswa.2022.118645_b0285","doi-asserted-by":"crossref","unstructured":"Gao, Y., Liu, J. (2021). Potential User Prediction for Financial APP Based on Random Forest Model,\u201c 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2021, pp. 180-185, 10.1109\/CSCWD49262.2021.9437776.","DOI":"10.1109\/CSCWD49262.2021.9437776"},{"key":"10.1016\/j.eswa.2022.118645_b0290","doi-asserted-by":"crossref","unstructured":"Liu, S., Zhang, C., Ma, J. (2017). CNN-LSTM Neural Network Model for Quantitative Strategy Analysis in Stock Markets. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science, vol 10635. Springer, Cham. 10.1007\/978-3-319-70096-0_21.","DOI":"10.1007\/978-3-319-70096-0_21"},{"key":"10.1016\/j.eswa.2022.118645_b0295","doi-asserted-by":"crossref","unstructured":"Sercan, K., Ugur A. (2017). A deep learning approach for optimization of systematic signal detection in financial trading systems with big data, International Journal of Intelligent Systems and Applications in Engineering. Special Issue (pg.31\u201336).","DOI":"10.18201\/ijisae.2017SpecialIssue31421"},{"key":"10.1016\/j.eswa.2022.118645_b0300","doi-asserted-by":"crossref","unstructured":"Kavitha, S., Varuna, S., Ramya R. (2016). A comparative analysis on linear regression and support vector Regression, 2016 Online International Conference on Green Engineering and Technologies (IC-GET), 2016, pp. 1-5, 10.1109\/GET.2016.7916627.","DOI":"10.1109\/GET.2016.7916627"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016888?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016888?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,5]],"date-time":"2023-12-05T15:51:20Z","timestamp":1701791480000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422016888"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":62,"alternative-id":["S0957417422016888"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118645","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ATM cash demand forecasting in an Indian bank with chaos and hybrid deep learning networks","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118645","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118645"}}