{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T19:52:03Z","timestamp":1726516323364},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T00:00:00Z","timestamp":1724976000000},"content-version":"am","delay-in-days":607,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.eswa.2022.118633","type":"journal-article","created":{"date-parts":[[2022,8,24]],"date-time":"2022-08-24T03:20:46Z","timestamp":1661311246000},"page":"118633","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Alzheimer\u2019s disease classification based on graph kernel SVMs constructed with 3D texture features extracted from MR images"],"prefix":"10.1016","volume":"211","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8147-1442","authenticated-orcid":false,"given":"Lucas Jos\u00e9 Cruz","family":"de Mendon\u00e7a","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1197-2553","authenticated-orcid":false,"given":"Ricardo Jos\u00e9","family":"Ferrari","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.118633_b1","doi-asserted-by":"crossref","first-page":"285","DOI":"10.22190\/FUME190327035A","article-title":"Results and challenges of artificial neural networks used for decision-making and control in medical applications","volume":"17","author":"Albu","year":"2019","journal-title":"Facta Universitatis"},{"key":"10.1016\/j.eswa.2022.118633_b2","series-title":"Computational science and its applications \u2013 ICCSA 2021","first-page":"18","article-title":"Assessment of linear and non-linear feature projections for the classification of 3-D MR images on cognitively normal, mild cognitive impairment and Alzheimer\u2019s disease","author":"Ara\u00fajo","year":"2021"},{"key":"10.1016\/j.eswa.2022.118633_b3","series-title":"Asian conference on computer vision","first-page":"26","article-title":"3D LBP-based rotationally invariant region description","author":"Banerjee","year":"2012"},{"key":"10.1016\/j.eswa.2022.118633_b4","series-title":"Fifth IEEE international conference on data mining (ICDM\u201905)","first-page":"1","article-title":"Shortest-path kernels on graphs","author":"Borgwardt","year":"2005"},{"key":"10.1016\/j.eswa.2022.118633_b5","doi-asserted-by":"crossref","unstructured":"Boser, B. E., Guyon, I. M., & Vapnik, V. N. 1992. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pen, USA. (pp. 144\u2013152).","DOI":"10.1145\/130385.130401"},{"key":"10.1016\/j.eswa.2022.118633_b6","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1515\/jaiscr-2018-0008","article-title":"Texture and gene expression analysis of the MRI brain in detection of Alzheimer\u2019s disease","volume":"8","author":"Bustamam","year":"2018","journal-title":"Journal of Artificial Intelligence and Soft Computing Research"},{"key":"10.1016\/j.eswa.2022.118633_b7","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1038\/s41583-019-0132-6","article-title":"Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease","volume":"20","author":"Butterfield","year":"2019","journal-title":"Nature Reviews Neuroscience"},{"key":"10.1016\/j.eswa.2022.118633_b8","doi-asserted-by":"crossref","first-page":"1774","DOI":"10.1016\/j.acra.2020.01.006","article-title":"Magnetic resonance texture analysis in Alzheimer\u2019s disease","volume":"27","author":"Cai","year":"2020","journal-title":"Academic Radiology"},{"key":"10.1016\/j.eswa.2022.118633_b9","series-title":"Proceedings of the 6th Brazilian technology symposium (BTSym\u201920), Vol. 233","first-page":"212","article-title":"Classification of brain MR images for the diagnosis of Alzheimer\u2019s disease features extracted from the three main brain tissues","author":"Cambui","year":"2021"},{"key":"10.1016\/j.eswa.2022.118633_b10","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1016\/j.crad.2004.07.008","article-title":"Texture analysis of medical images","volume":"59","author":"Castellano","year":"2004","journal-title":"Clinical Radiology"},{"key":"10.1016\/j.eswa.2022.118633_b11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"Libsvm: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"key":"10.1016\/j.eswa.2022.118633_b12","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.nicl.2012.10.002","article-title":"Scoring by nonlocal image patch estimator for early detection of Alzheimer\u2019 s disease","volume":"1","author":"Coup\u00e9","year":"2012","journal-title":"NeuroImage: Clinical"},{"key":"10.1016\/j.eswa.2022.118633_b13","series-title":"An introduction to support vector machines and other kernel-based learning methods","author":"Cristianini","year":"2000"},{"key":"10.1016\/j.eswa.2022.118633_b14","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fncom.2018.00031","article-title":"Classification of Alzheimer\u2019s disease, mild cognitive impairment, and normal controls with subnetwork selection and graph kernel principal component analysis based on minimum spanning tree brain functional network","volume":"12","author":"Cui","year":"2018","journal-title":"Frontiers in Computational Neuroscience"},{"key":"10.1016\/j.eswa.2022.118633_b15","doi-asserted-by":"crossref","first-page":"239","DOI":"10.3390\/diagnostics11020239","article-title":"Texture features of proton density fat fraction maps from chemical shift encoding-based MRI predict paraspinal muscle strength","volume":"11","author":"Dieckmeyer","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.eswa.2022.118633_b16","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1016\/S1474-4422(14)70090-0","article-title":"Advancing research diagnostic criteria for Alzheimer\u2019s disease: the IWG-2 criteria","volume":"13","author":"Dubois","year":"2014","journal-title":"The Lancet Neurology"},{"key":"10.1016\/j.eswa.2022.118633_b17","first-page":"108","article-title":"Identification of Alzheimer\u2019s disease based on wavelet transformation energy feature of the structural MRI image and NN classifier","author":"Feng","year":"2020","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.eswa.2022.118633_b18","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1093\/cercor\/bhg087","article-title":"Automatically parcellating the human cerebral cortex","volume":"14","author":"Fischl","year":"2004","journal-title":"Cerebral Cortex"},{"key":"10.1016\/j.eswa.2022.118633_b19","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1007\/BF01025868","article-title":"On the histogram as a density estimator: L2 theory","volume":"57","author":"Freedman","year":"1981","journal-title":"Zeitschrift F\u00fcr Wahrscheinlichkeitstheorie Und Verwandte Gebiete"},{"key":"10.1016\/j.eswa.2022.118633_b20","unstructured":"Galloway,\u00a0M. M. (1974). Texture analysis using grey level run lengths: NASA STI\/Recon technical report N, 75, (p. 18555)."},{"key":"10.1016\/j.eswa.2022.118633_b21","doi-asserted-by":"crossref","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","author":"Haralick","year":"1973","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics"},{"key":"10.1016\/j.eswa.2022.118633_b22","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1515\/crll.1909.136.210","article-title":"Neue begr\u00fcndung der theorie quadratischer formen von unendlichvielen ver\u00e4nderlichen","volume":"1909","author":"Hellinger","year":"1909","journal-title":"Journal F\u00fcr Die Reine Und Angewandte Mathematik"},{"key":"10.1016\/j.eswa.2022.118633_b23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-49970-9","article-title":"Multimodal hippocampal subfield grading for alzheimer\u2019s disease classification","volume":"9","author":"Hett","year":"2019","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2022.118633_b24","series-title":"Medical image computing and computer assisted intervention \u2013 MICCAI 2018","first-page":"429","article-title":"Graph of brain structures grading for early detection of Alzheimer\u2019s disease","author":"Hett","year":"2018"},{"key":"10.1016\/j.eswa.2022.118633_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101850","article-title":"Multi-scale graph-based grading for Alzheimer\u2019s disease prediction","volume":"67","author":"Hett","year":"2021","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2022.118633_b26","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1002\/jmri.21049","article-title":"The Alzheimer\u2019s disease neuroimaging initiative (ADNI): MRI methods","volume":"27","author":"Jack","year":"2008","journal-title":"Journal of Magnetic Resonance Imaging"},{"key":"10.1016\/j.eswa.2022.118633_b27","series-title":"7th ACM conference on bioinformatics, computational biology, and health informatics","first-page":"622","article-title":"Sub-network based kernels for brain network classification","author":"Jie","year":"2016"},{"key":"10.1016\/j.eswa.2022.118633_b28","doi-asserted-by":"crossref","first-page":"2340","DOI":"10.1109\/TIP.2018.2799706","article-title":"Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis","volume":"27","author":"Jie","year":"2018","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2022.118633_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fnins.2012.00171","article-title":"101 Labeled brain images and a consistent human cortical labeling protocol","volume":"6","author":"Klein","year":"2012","journal-title":"Frontiers in Neuroscience"},{"key":"10.1016\/j.eswa.2022.118633_b30","doi-asserted-by":"crossref","DOI":"10.1007\/s41109-019-0195-3","article-title":"A survey on graph kernels","volume":"5","author":"Kriege","year":"2020","journal-title":"Applied Network Science"},{"key":"10.1016\/j.eswa.2022.118633_b31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s41109-019-0195-3","article-title":"A survey on graph kernels","volume":"5","author":"Kriege","year":"2020","journal-title":"Applied Network Science"},{"key":"10.1016\/j.eswa.2022.118633_b32","series-title":"On information and sufficiencyannals of mathematical statistics, Vol. 22","first-page":"79","author":"Kullback","year":"1951"},{"key":"10.1016\/j.eswa.2022.118633_b33","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1109\/TCBB.2016.2635144","article-title":"Classification of Alzheimer\u2019s disease using whole brain hierarchical network","volume":"15","author":"Liu","year":"2016","journal-title":"IEEE\/ACM Transactions on Computational Biology and Bioinformatics"},{"key":"10.1016\/j.eswa.2022.118633_b34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-020-3437-6","article-title":"Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks","volume":"21","author":"Liu","year":"2020","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2022.118633_b35","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1109\/TNB.2017.2707139","article-title":"Alzheimer\u2019s disease classification based on individual hierarchical networks constructed with 3-D texture features","volume":"16","author":"Liu","year":"2017","journal-title":"IEEE Transactions on Nanobioscience"},{"key":"10.1016\/j.eswa.2022.118633_b36","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1016\/S0140-6736(17)31363-6","article-title":"Dementia prevention, intervention, and care","volume":"390","author":"Livingston","year":"2017","journal-title":"The Lancet"},{"key":"10.1016\/j.eswa.2022.118633_b37","doi-asserted-by":"crossref","first-page":"965","DOI":"10.3233\/JAD-171145","article-title":"Alzheimer\u2019s disease: a journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies\u2014gains from AIBL and DIAN cohort studies","volume":"62","author":"Martins","year":"2018","journal-title":"Journal of Alzheimer\u2019s Disease"},{"issue":"13","key":"10.1016\/j.eswa.2022.118633_b38","article-title":"ITK: enabling reproducible research and open science","volume":"8","author":"McCormick","year":"2014","journal-title":"Frontiers in Neuroinformatics"},{"key":"10.1016\/j.eswa.2022.118633_b39","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.jalz.2011.03.005","article-title":"The diagnosis of dementia due to Alzheimer\u2019s disease: recommendations from the national institute on aging-Alzheimer\u2019s association workgroups on diagnostic guidelines for Alzheimer\u2019s disease","volume":"7","author":"McKhann","year":"2011","journal-title":"Alzheimer\u2019s & Dementia"},{"key":"10.1016\/j.eswa.2022.118633_b40","series-title":"IEEE 16th international conference on data mining (ICDM)","first-page":"1095","article-title":"Faster kernels for graphs with continuous attributes via hashing","author":"Morris","year":"2016"},{"key":"10.1016\/j.eswa.2022.118633_b41","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1001\/archneur.58.3.397","article-title":"Mild cognitive impairment represents early-stage alzheimer disease","volume":"58","author":"Morris","year":"2001","journal-title":"Archives of Neurology"},{"key":"10.1016\/j.eswa.2022.118633_b42","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.artmed.2019.05.003","article-title":"Texture descriptors and voxels for the early diagnosis of Alzheimer\u2019s disease","volume":"97","author":"Nanni","year":"2019","journal-title":"Artificial Intelligence in Medicine"},{"key":"10.1016\/j.eswa.2022.118633_b43","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s10994-015-5517-9","article-title":"Propagation kernels: efficient graph kernels from propagated information","volume":"102","author":"Neumann","year":"2016","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2022.118633_b44","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0239438","article-title":"Adding the temporal domain to PET radiomic features","volume":"15","author":"Noortman","year":"2020","journal-title":"PLoS One"},{"key":"10.1016\/j.eswa.2022.118633_b45","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/0031-3203(95)00067-4","article-title":"A comparative study of texture measures with classification based on featured distributions","volume":"29","author":"Ojala","year":"1996","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2022.118633_b46","series-title":"2020 IEEE 33rd international symposium on computer-based medical systems (CBMS)","first-page":"59","article-title":"Exploring hippocampal asymmetrical features from magnetic resonance images for the classification of Alzheimer\u2019s disease","author":"Oliveira","year":"2020"},{"key":"10.1016\/j.eswa.2022.118633_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.116622","article-title":"A deep ensemble hippocampal CNN model for brain age estimation applied to Alzheimer\u2019s diagnosis","volume":"195","author":"Poloni","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118633_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106581","article-title":"Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer\u2019s disease","volume":"214","author":"Poloni","year":"2022","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2022.118633_b49","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/e19020047","article-title":"On wasserstein two-sample testing and related families of nonparametric tests","volume":"19","author":"Ramdas","year":"2017","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2022.118633_b50","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1109\/MSP.2012.2233865","article-title":"Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience","volume":"30","author":"Richiardi","year":"2013","journal-title":"IEEE Signal Processing Magazine"},{"key":"10.1016\/j.eswa.2022.118633_b51","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1023\/A:1026543900054","article-title":"The earth mover\u2019s distance as a metric for image retrieval","volume":"40","author":"Rubner","year":"2000","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.eswa.2022.118633_b52","article-title":"Weisfeiler-lehman graph kernels","volume":"12","author":"Shervashidze","year":"2011","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2022.118633_b53","article-title":"Detector of 3-D salient points based on the dual-tree complex wavelet transform for the positioning of hippocampi meshes in magnetic resonance images","volume":"341","author":"Silveira\u00a0Souza","year":"2020","journal-title":"Journal of Neuroscience Methods"},{"key":"10.1016\/j.eswa.2022.118633_b54","doi-asserted-by":"crossref","first-page":"42816","DOI":"10.1109\/ACCESS.2020.2974997","article-title":"Classification of mild cognitive impairment based on a combined high-order network and graph convolutional network","volume":"8","author":"Song","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.118633_b55","doi-asserted-by":"crossref","first-page":"1148","DOI":"10.1002\/hbm.23091","article-title":"Early detection of Alzheimer\u2019s disease using MRI hippocampal texture","volume":"37","author":"S\u00f8rensen","year":"2016","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.eswa.2022.118633_b56","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117538","article-title":"Predictive self-organizing neural networks for in-home detection of mild cognitive impairment","volume":"205","author":"Teh","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118633_b57","article-title":"Computing textural feature maps for N-dimensional images","author":"Vimort","year":"2017","journal-title":"The Insight Journal"},{"key":"10.1016\/j.eswa.2022.118633_b58","first-page":"1","article-title":"Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations","volume":"23","author":"Wee","year":"2019","journal-title":"NeuroImage: Clinical"},{"key":"10.1016\/j.eswa.2022.118633_b59","doi-asserted-by":"crossref","first-page":"1574","DOI":"10.1109\/TKDE.2012.89","article-title":"Mkboost: A framework of multiple kernel boosting","volume":"25","author":"Xia","year":"2012","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2022.118633_b60","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-020-57951-6","article-title":"On brain atlas choice and automatic segmentation methods : a comparison of MAPER & FreeSurfer using three atlas databases","volume":"10","author":"Yaakub","year":"2020","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2022.118633_b61","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1007\/s11682-011-9142-3","article-title":"3D texture analysis on MRI images of Alzheimer\u2019s disease","volume":"6","author":"Zhang","year":"2012","journal-title":"Brain Imaging and Behavior"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016797?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016797?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,5]],"date-time":"2023-12-05T20:50:56Z","timestamp":1701809456000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422016797"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":61,"alternative-id":["S0957417422016797"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118633","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Alzheimer\u2019s disease classification based on graph kernel SVMs constructed with 3D texture features extracted from MR images","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118633","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118633"}}