{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T09:33:33Z","timestamp":1725096813518},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2020YFB1712901"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.eswa.2022.118610","type":"journal-article","created":{"date-parts":[[2022,8,19]],"date-time":"2022-08-19T09:41:31Z","timestamp":1660902091000},"page":"118610","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Multi-time Scale Attention Network for WEEE reverse logistics return prediction"],"prefix":"10.1016","volume":"211","author":[{"given":"Jia","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0127-7477","authenticated-orcid":false,"given":"Min","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Jiaqi","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Jinyong","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Meiling","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Wan","sequence":"additional","affiliation":[]},{"given":"Linda","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.118610_b1","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.resconrec.2015.07.006","article-title":"Stochastic reverse logistics network design for waste of electrical and electronic equipment","volume":"104","author":"Ayvaz","year":"2015","journal-title":"Resources, Conservation and Recycling"},{"key":"10.1016\/j.eswa.2022.118610_b2","unstructured":"Bahdanau,\u00a0D., Cho,\u00a0K., & Bengio,\u00a0Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In Y.\u00a0Bengio, & Y.\u00a0LeCun (Eds.), 3rd International conference on learning representations, ICLR 2015, May 7-9, 2015, conference track proceedings. San Diego, CA, USA: http:\/\/dx.doi.org\/10.48550\/ARXIV.1409.0473."},{"issue":"1","key":"10.1016\/j.eswa.2022.118610_b3","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1108\/MSCRA-03-2019-0009","article-title":"Exploring the relationship between reverse logistics and sustainability performance","volume":"1","author":"Banihashemi","year":"2019","journal-title":"Modern Supply Chain Research and Applications"},{"key":"10.1016\/j.eswa.2022.118610_b4","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.spc.2020.05.007","article-title":"Circular economy in the WEEE industry: a systematic literature review and a research agenda","volume":"23","author":"Bressanelli","year":"2020","journal-title":"Sustainable Production and Consumption"},{"key":"10.1016\/j.eswa.2022.118610_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.resconrec.2019.104583","article-title":"Industry 4.0 and circular economy: Operational excellence for sustainable reverse supply chain performance","volume":"153","author":"Dev","year":"2020","journal-title":"Resources, Conservation and Recycling"},{"issue":"20","key":"10.1016\/j.eswa.2022.118610_b6","doi-asserted-by":"crossref","first-page":"15747","DOI":"10.1007\/s00500-020-04904-w","article-title":"Predictive analysis of electronic waste for reverse logistics operations: a comparison of improved univariate grey models","volume":"24","author":"Duman","year":"2020","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2022.118610_b7","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.techfore.2016.09.030","article-title":"Grey modelling based forecasting system for return flow of end-of-life vehicles","volume":"115","author":"Ene","year":"2017","journal-title":"Technological Forecasting and Social Change"},{"key":"10.1016\/j.eswa.2022.118610_b8","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.spc.2019.08.003","article-title":"Green business value chain: a systematic review","volume":"20","author":"Hasan","year":"2019","journal-title":"Sustainable Production and Consumption"},{"issue":"8","key":"10.1016\/j.eswa.2022.118610_b9","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.118610_b10","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.neucom.2019.11.060","article-title":"Multistage attention network for multivariate time series prediction","volume":"383","author":"Hu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.118610_b11","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.resconrec.2018.05.026","article-title":"Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic Equipment (WEEE)\/E-waste: A comprehensive literature review","volume":"137","author":"Islam","year":"2018","journal-title":"Resources, Conservation and Recycling"},{"key":"10.1016\/j.eswa.2022.118610_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.resconrec.2017.11.029","article-title":"Modelling the levels of historic waste electrical and electronic equipment in Ireland","volume":"131","author":"Johnson","year":"2018","journal-title":"Resources, Conservation and Recycling"},{"issue":"1","key":"10.1016\/j.eswa.2022.118610_b13","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/S0272-6963(89)80003-8","article-title":"Forecasting the returns of reusable containers","volume":"8","author":"Kelle","year":"1989","journal-title":"Journal of Operations Management"},{"key":"10.1016\/j.eswa.2022.118610_b14","unstructured":"Kingma,\u00a0D. P., & Ba,\u00a0J. (2015). Adam: A Method for Stochastic Optimization. In Y.\u00a0Bengio, & Y.\u00a0LeCun (Eds.), 3rd International conference on learning representations, ICLR 2015, May 7-9, 2015, conference track proceedings. San Diego, CA, USA: http:\/\/dx.doi.org\/10.48550\/ARXIV.1412.6980."},{"issue":"3","key":"10.1016\/j.eswa.2022.118610_b15","doi-asserted-by":"crossref","first-page":"669","DOI":"10.2478\/amcs-2014-0049","article-title":"Forecasting return products in an integrated forward\/reverse supply chain utilizing an ANFIS","volume":"24","author":"Kumar","year":"2014","journal-title":"International Journal of Applied Mathematics and Computer Science"},{"key":"10.1016\/j.eswa.2022.118610_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.scitotenv.2020.139745","article-title":"Environmental and health impacts due to e-waste disposal in China - A review","volume":"737","author":"Li","year":"2020","journal-title":"Science of the Total Environment"},{"key":"10.1016\/j.eswa.2022.118610_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113082","article-title":"DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction","volume":"143","author":"Liu","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.118610_b18","doi-asserted-by":"crossref","DOI":"10.14257\/ijunesst.2016.9.8.23","article-title":"Research on prediction of reverse returned logistics based on grey-Markov model","volume":"9","author":"Luo","year":"2016","journal-title":"International Journal of U- and E- Service, Science and Technology"},{"key":"10.1016\/j.eswa.2022.118610_b19","series-title":"Effective approaches to attention-based neural machine translation","author":"Luong","year":"2015"},{"issue":"8","key":"10.1016\/j.eswa.2022.118610_b20","doi-asserted-by":"crossref","DOI":"10.3390\/app11083536","article-title":"Kriging method-based return prediction of waste electrical and electronic equipment in reverse logistics","volume":"11","author":"Lv","year":"2021","journal-title":"Applied Sciences"},{"key":"10.1016\/j.eswa.2022.118610_b21","first-page":"1","article-title":"Systematic literature review of reverse logistics for e-waste: overview, analysis, and future research agenda","author":"Ni","year":"2021","journal-title":"International Journal of Logistics Research and Applications"},{"key":"10.1016\/j.eswa.2022.118610_b22","series-title":"N-BEATS: Neural basis expansion analysis for interpretable time series forecasting","author":"Oreshkin","year":"2019"},{"key":"10.1016\/j.eswa.2022.118610_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.120990","article-title":"A circular approach to the e-waste valorization through urban mining in Rio de Janeiro, Brazil","volume":"261","author":"Ottoni","year":"2020","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.eswa.2022.118610_b24","series-title":"Advances in neural information processing systems, vol. 32","article-title":"PyTorch: An imperative style, high-performance deep learning library","author":"Paszke","year":"2019"},{"issue":"11","key":"10.1016\/j.eswa.2022.118610_b25","article-title":"Developing return supply chain: A research on the automotive supply chain","volume":"14","author":"Pinho\u00a0Santos","year":"2022","journal-title":"Sustainability"},{"issue":"1","key":"10.1016\/j.eswa.2022.118610_b26","doi-asserted-by":"crossref","DOI":"10.3390\/su13010331","article-title":"Trends and new challenges in the green supply chain: The reverse logistics","volume":"13","author":"Plaza-\u00dabeda","year":"2021","journal-title":"Sustainability"},{"issue":"3\u20134","key":"10.1016\/j.eswa.2022.118610_b27","first-page":"31","article-title":"A systematic literature review on decomposition approaches to estimate time series components","volume":"11","author":"Rios","year":"2012","journal-title":"INFOCOMP Journal of Computer Science"},{"key":"10.1016\/j.eswa.2022.118610_b28","series-title":"An overview of gradient descent optimization algorithms","author":"Ruder","year":"2016"},{"issue":"6088","key":"10.1016\/j.eswa.2022.118610_b29","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Learning representations by back-propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.eswa.2022.118610_b30","series-title":"Image analysis and processing \u2013 ICIAP 2022","first-page":"633","article-title":"DMSANet: Dual multi scale attention network","author":"Sagar","year":"2022"},{"issue":"3","key":"10.1016\/j.eswa.2022.118610_b31","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1016\/j.ijforecast.2019.07.001","article-title":"DeepAR: Probabilistic forecasting with autoregressive recurrent networks","volume":"36","author":"Salinas","year":"2020","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.eswa.2022.118610_b32","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/j.wasman.2020.10.016","article-title":"Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges","volume":"120","author":"Shittu","year":"2021","journal-title":"Waste Management"},{"key":"10.1016\/j.eswa.2022.118610_b33","series-title":"2018 17th IEEE international conference on machine learning and applications (ICMLA)","first-page":"1394","article-title":"A comparison of ARIMA and LSTM in forecasting time series","author":"Siami-Namini","year":"2018"},{"key":"10.1016\/j.eswa.2022.118610_b34","series-title":"Smoothing methods in statistics","author":"Simonoff","year":"2012"},{"key":"10.1016\/j.eswa.2022.118610_b35","series-title":"Advances in neural information processing systems, vol. 30","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.eswa.2022.118610_b36","series-title":"Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting","author":"Wu","year":"2021"},{"key":"10.1016\/j.eswa.2022.118610_b37","series-title":"2009 International conference on information management, innovation management and industrial engineering, vol. 2","first-page":"324","article-title":"Forecast for the amount of returned products based on wave function","author":"Xiaofeng","year":"2009"},{"issue":"8","key":"10.1016\/j.eswa.2022.118610_b38","doi-asserted-by":"crossref","first-page":"1105","DOI":"10.1016\/j.techfore.2009.03.004","article-title":"Logistic model-based forecast of sales and generation of obsolete computers in the U.S.","volume":"76","author":"Yang","year":"2009","journal-title":"Technological Forecasting and Social Change"},{"issue":"12","key":"10.1016\/j.eswa.2022.118610_b39","doi-asserted-by":"crossref","first-page":"11106","DOI":"10.1609\/aaai.v35i12.17325","article-title":"Informer: Beyond efficient transformer for long sequence time-series forecasting","volume":"35","author":"Zhou","year":"2021","journal-title":"Proceedings of the AAAI Conference on Artificial Intelligence"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016608?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422016608?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,5]],"date-time":"2023-12-05T15:49:46Z","timestamp":1701791386000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422016608"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":39,"alternative-id":["S0957417422016608"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118610","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-time Scale Attention Network for WEEE reverse logistics return prediction","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.118610","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"118610"}}