{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T20:31:05Z","timestamp":1723235465296},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.eswa.2022.117945","type":"journal-article","created":{"date-parts":[[2022,6,23]],"date-time":"2022-06-23T16:00:20Z","timestamp":1656000020000},"page":"117945","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Smart interpretable model (SIM) enabling subject matter experts in rule generation"],"prefix":"10.1016","volume":"207","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4185-7185","authenticated-orcid":false,"given":"Hotman","family":"Christianto","sequence":"first","affiliation":[]},{"given":"Gary Kee Khoon","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Zhou Weigui","family":"Jair","sequence":"additional","affiliation":[]},{"given":"Henry","family":"Kasim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7788-8368","authenticated-orcid":false,"given":"Deepu","family":"Rajan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2\u20133","key":"10.1016\/j.eswa.2022.117945_b1","first-page":"255","article-title":"KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"Journal of Multiple-Valued Logic and Soft Computing"},{"key":"10.1016\/j.eswa.2022.117945_b2","article-title":"Periodic progress report 4, ROARS project ESPRIT II-number 5516","volume":"79","author":"Alinat","year":"1993","journal-title":"Technical Thomson Report TS ASM 93\/S\/EGS\/NC"},{"key":"10.1016\/j.eswa.2022.117945_b3","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1109\/TSMCB.2003.812850","article-title":"POPFNN-CRI(s): Pseudo outer product based fuzzy neural network using the compositional rule of inference and singleton fuzzifier","volume":"33","author":"Ang","year":"2003","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics : A Publication of the IEEE Systems, Man, and Cybernetics Society"},{"issue":"4","key":"10.1016\/j.eswa.2022.117945_b4","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1111\/rssb.12377","article-title":"Visualizing the effects of predictor variables in black box supervised learning models","volume":"82","author":"Apley","year":"2020","journal-title":"Journal of the Royal Statistical Society. Series B. Statistical Methodology"},{"issue":"130","key":"10.1016\/j.eswa.2022.117945_b5","first-page":"1","article-title":"AI explainability 360: An extensible toolkit for understanding data and machine learning models","volume":"21","author":"Arya","year":"2020","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2022.117945_b6","unstructured":"Dash,\u00a0S., G\u00fcnl\u00fck,\u00a0O., & Wei,\u00a0D. (2018). Boolean decision rules via column generation. In Proceedings of the advances in neural information processing systems (pp. 4655\u20134665)."},{"key":"10.1016\/j.eswa.2022.117945_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2020.11.019","article-title":"An advanced interpretable fuzzy neural network model based on uni-nullneuron constructed from N-uninorms","volume":"426","author":"de Campos Souza","year":"2022","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.eswa.2022.117945_b8","series-title":"UCI machine learning repository","author":"Dua","year":"2017"},{"key":"10.1016\/j.eswa.2022.117945_b9","first-page":"1189","article-title":"Greedy function approximation: A gradient boosting machine","author":"Friedman","year":"2001","journal-title":"The Annals of Statistics"},{"key":"10.1016\/j.eswa.2022.117945_b10","series-title":"International conference on artificial intelligence and statistics","first-page":"1287","article-title":"Explaining the explainer: A first theoretical analysis of LIME","author":"Garreau","year":"2020"},{"issue":"4","key":"10.1016\/j.eswa.2022.117945_b11","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1109\/JAS.2020.1003114","article-title":"AI-based modeling and data-driven evaluation for smart manufacturing processes","volume":"7","author":"Ghahramani","year":"2020","journal-title":"IEEE\/CAA Journal of Automatica Sinica"},{"issue":"2","key":"10.1016\/j.eswa.2022.117945_b12","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1609\/aimag.v40i2.2850","article-title":"DARPA\u2019s explainable artificial intelligence (XAI) program","volume":"40","author":"Gunning","year":"2019","journal-title":"AI Magazine"},{"issue":"398","key":"10.1016\/j.eswa.2022.117945_b13","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1080\/01621459.1987.10478440","article-title":"Generalized additive models: Some applications","volume":"82","author":"Hastie","year":"1987","journal-title":"Journal of the American Statistical Association"},{"issue":"6","key":"10.1016\/j.eswa.2022.117945_b14","doi-asserted-by":"crossref","first-page":"1302","DOI":"10.1007\/s13198-018-0729-6","article-title":"An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study","volume":"9","author":"Jain","year":"2018","journal-title":"International Journal of Systems Assurance Engineering and Management"},{"key":"10.1016\/j.eswa.2022.117945_b15","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1162\/tacl_a_00065","article-title":"Google\u2019s multilingual neural machine translation system: Enabling zero-shot translation","volume":"5","author":"Johnson","year":"2017","journal-title":"Transactions of the Association for Computational Linguistics"},{"key":"10.1016\/j.eswa.2022.117945_b16","unstructured":"Kaya,\u00a0H., T\u00fcfekci,\u00a0P., & G\u00fcrgen,\u00a0F. S. (2012a). Local and global learning methods for predicting power of a combined gas & steam turbine. In Proceedings of the international conference on emerging trends in computer and electronics engineering icetcee (pp. 13\u201318)."},{"key":"10.1016\/j.eswa.2022.117945_b17","unstructured":"Kaya,\u00a0H., T\u00fcfekci,\u00a0P., & G\u00fcrgen,\u00a0F. S. (2012b). Local and global learning methods for predicting power of a combined gas & steam turbine. In Proceedings of the international conference on emerging trends in computer and electronics engineering icetcee (pp. 13\u201318)."},{"issue":"181","key":"10.1016\/j.eswa.2022.117945_b18","first-page":"1","article-title":"Alibi explain: Algorithms for explaining machine learning models","volume":"22","author":"Klaise","year":"2021","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2022.117945_b19","unstructured":"Kracker,\u00a0D., Garcke,\u00a0J., Schumacher,\u00a0A., & Schwanitz,\u00a0P. (2020). Automatic analysis of crash simulations with dimensionality reduction algorithms such as PCA and t-SNE. In 16th International LS-DYNA\u00ae users conference, Stuttgart\/Detroit, May."},{"key":"10.1016\/j.eswa.2022.117945_b20","article-title":"Improved genetic\u2013fuzzy system for breast cancer diagnosis","author":"Kumar","year":"2008","journal-title":"International Journal of Systemetics, Cybernetics and Informatics"},{"issue":"04","key":"10.1016\/j.eswa.2022.117945_b21","doi-asserted-by":"crossref","DOI":"10.1142\/S0219720017500172","article-title":"Application of t-SNE to human genetic data","volume":"15","author":"Li","year":"2017","journal-title":"Journal of Bioinformatics and Computational Biology"},{"key":"10.1016\/j.eswa.2022.117945_b22","series-title":"Human and machine learning \u2014 visible, explainable, trustworthy and transparent","first-page":"177","article-title":"Model explanation and interpretation concepts for stimulating advanced human-machine interaction with \u2019expert-in-the-loop\u2019","author":"Lughofer","year":"2018"},{"key":"10.1016\/j.eswa.2022.117945_b23","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.ins.2017.08.012","article-title":"Explaining classifier decisions linguistically for stimulating and improving operators labeling behavior","volume":"420","author":"Lughofer","year":"2017","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2022.117945_b24","series-title":"Consistent individualized feature attribution for tree ensembles","author":"Lundberg","year":"2018"},{"issue":"2","key":"10.1016\/j.eswa.2022.117945_b25","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1148\/radiol.2019191293","article-title":"Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation","volume":"294","author":"Majkowska","year":"2020","journal-title":"Radiology"},{"issue":"4","key":"10.1016\/j.eswa.2022.117945_b26","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1287\/opre.43.4.570","article-title":"Breast cancer diagnosis and prognosis via linear programming","volume":"43","author":"Mangasarian","year":"1995","journal-title":"Operations Research"},{"key":"10.1016\/j.eswa.2022.117945_b27","series-title":"Cancer diagnosis via linear programming","author":"Mangasarian","year":"1990"},{"key":"10.1016\/j.eswa.2022.117945_b28","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.asoc.2018.05.017","article-title":"Prediction of welding residual stresses using machine learning: comparison between neural networks and neuro-fuzzy systems","volume":"70","author":"Mathew","year":"2018","journal-title":"Applied Soft Computing"},{"issue":"7","key":"10.1016\/j.eswa.2022.117945_b29","doi-asserted-by":"crossref","DOI":"10.1007\/s11269-017-1632-7","article-title":"Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction","volume":"31","author":"Moeeni","year":"2017","journal-title":"Water Resources Management"},{"key":"10.1016\/j.eswa.2022.117945_b30","series-title":"UCI repository of machine learning databases","author":"Newman","year":"1998"},{"key":"10.1016\/j.eswa.2022.117945_b31","series-title":"InterpretML: A unified framework for machine learning interpretability","author":"Nori","year":"2019"},{"issue":"4","key":"10.1016\/j.eswa.2022.117945_b32","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1177\/0008125619859318","article-title":"Letting the computers take over: Using AI to solve marketing problems","volume":"61","author":"Overgoor","year":"2019","journal-title":"California Management Review"},{"key":"10.1016\/j.eswa.2022.117945_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107249","article-title":"A wrapper methodology to learn interval-valued fuzzy rule-based classification systems","volume":"104","author":"Sanz","year":"2021","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2022.117945_b34","doi-asserted-by":"crossref","unstructured":"Selvaraju,\u00a0R. R., Cogswell,\u00a0M., Das,\u00a0A., Vedantam,\u00a0R., Parikh,\u00a0D., & Batra,\u00a0D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618\u2013626).","DOI":"10.1109\/ICCV.2017.74"},{"key":"10.1016\/j.eswa.2022.117945_b35","series-title":"International conference on machine learning","first-page":"3145","article-title":"Learning important features through propagating activation differences","author":"Shrikumar","year":"2017"},{"issue":"5","key":"10.1016\/j.eswa.2022.117945_b36","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1038\/s41591-018-0029-3","article-title":"AI for medical imaging goes deep","volume":"24","author":"Ting","year":"2018","journal-title":"Nature Medicine"},{"key":"10.1016\/j.eswa.2022.117945_b37","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.ijepes.2014.02.027","article-title":"Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods","volume":"60","author":"T\u00fcfekci","year":"2014","journal-title":"International Journal of Electrical Power & Energy Systems"},{"issue":"11","key":"10.1016\/j.eswa.2022.117945_b38","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van der Maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2022.117945_b39","series-title":"International conference on machine learning","first-page":"6687","article-title":"Generalized linear rule models","author":"Wei","year":"2019"},{"issue":"9","key":"10.1016\/j.eswa.2022.117945_b40","doi-asserted-by":"crossref","first-page":"1569","DOI":"10.1016\/S0893-6080(96)00027-5","article-title":"POPFNN: A pseudo outer-product based fuzzy neural network","volume":"9","author":"Zhou","year":"1996","journal-title":"Neural Networks"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422011824?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422011824?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:12:40Z","timestamp":1714540360000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422011824"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":40,"alternative-id":["S0957417422011824"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117945","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Smart interpretable model (SIM) enabling subject matter experts in rule generation","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117945","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"117945"}}