{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:49:28Z","timestamp":1740116968245,"version":"3.37.3"},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003593","name":"CNPq","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004586","name":"FAPERJ","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004586","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.eswa.2022.117828","type":"journal-article","created":{"date-parts":[[2022,6,10]],"date-time":"2022-06-10T17:24:50Z","timestamp":1654881890000},"page":"117828","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Soft computing for nonlinear risk assessment of complex socio-technical systems"],"prefix":"10.1016","volume":"206","author":[{"given":"Ivenio Teixeira","family":"de Souza","sequence":"first","affiliation":[]},{"given":"Ana","family":"Carolina Rosa","sequence":"additional","affiliation":[]},{"given":"Riccardo","family":"Patriarca","sequence":"additional","affiliation":[]},{"given":"Assed","family":"Haddad","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.117828_b0005","doi-asserted-by":"crossref","first-page":"102811","DOI":"10.1109\/ACCESS.2020.2997946","article-title":"A deep learning approach towards railway safety risk assessment","volume":"8","author":"Alawad","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.117828_b0010","article-title":"Integration of functional resonance analysis with multicriteria analysis for sociotechnical systems risk management","author":"Alboghobeish","year":"2021","journal-title":"Risk Analysis"},{"key":"10.1016\/j.eswa.2022.117828_b0015","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.ress.2016.10.004","article-title":"An application of the Functional Resonance Analysis Method (FRAM) to risk analysis of multifunctional flood defences in the Netherlands","volume":"158","author":"Anvarifar","year":"2017","journal-title":"Reliability Engineering and System Safety"},{"issue":"1","key":"10.1016\/j.eswa.2022.117828_b0020","first-page":"1","article-title":"Quantify resilience enhancement of UTS through exploiting Connected Community and Internet of Everything emerging technologies","volume":"18","author":"Bellini","year":"2017","journal-title":"ArXiv"},{"issue":"1","key":"10.1016\/j.eswa.2022.117828_b0025","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1109\/JSYST.2019.2905713","article-title":"A functional resonance analysis method driven resilience quantification for socio-technical systems","volume":"14","author":"Bellini","year":"2020","journal-title":"IEEE Systems Journal"},{"key":"10.1016\/j.eswa.2022.117828_b0030","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.ress.2016.08.004","article-title":"Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM","volume":"156","author":"Bjerga","year":"2016","journal-title":"Reliability Engineering and System Safety"},{"key":"10.1016\/j.eswa.2022.117828_b0035","doi-asserted-by":"crossref","unstructured":"Cheraghi, M., Baladeh, A. E., & Khakzad, N. (2021). Optimal selection of safety recommendations: A hybrid fuzzy multi-criteria decision-making approach to HAZOP. Journal of Loss Prevention in the Process Industries, 74(September 2021), 104654. doi:10.1016\/j.jlp.2021.104654.","DOI":"10.1016\/j.jlp.2021.104654"},{"key":"10.1016\/j.eswa.2022.117828_b0040","doi-asserted-by":"crossref","unstructured":"Combs, W. E., & Andrews, J. E. (1998). Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy Systems, 6(1), 1\u201311. doi:10.1109\/91.660804.","DOI":"10.1109\/91.660804"},{"year":"1994","series-title":"Fuzzy Systems Handbook: A Practitioner\u2019s Guide to Building, Using, and Maintaining Fuzzy Systems","author":"Cox","key":"10.1016\/j.eswa.2022.117828_b0045"},{"key":"10.1016\/j.eswa.2022.117828_b0050","article-title":"Employing resilience engineering in eliciting software requirements for complex systems: Experiments with the functional resonance analysis method (FRAM)","author":"de Carvalho","year":"2020","journal-title":"Cognition, Technology and Work."},{"key":"10.1016\/j.eswa.2022.117828_b0055","doi-asserted-by":"crossref","unstructured":"Pardo-Ferreira, M. del C., Rubio-Romero, J. C., Gibb, A., & Calero-Castro, S. (2020). Using functional resonance analysis method to understand construction activities for concrete structures. Safety Science, 128(October 2019). doi:10.1016\/j.ssci.2020.104771.","DOI":"10.1016\/j.ssci.2020.104771"},{"issue":"1","key":"10.1016\/j.eswa.2022.117828_b0060","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1080\/17512549.2017.1325401","article-title":"An innovative soft computing system for smart energy grids cybersecurity","volume":"12","author":"Demertzis","year":"2018","journal-title":"Advances in Building Energy Research"},{"key":"10.1016\/j.eswa.2022.117828_b0065","doi-asserted-by":"crossref","unstructured":"Duan, G., Tian, J., & Wu, J. (2015). Extended FRAM by Integrating with Model Checking to Effectively Explore Hazard Evolution. Mathematical Problems in Engineering, 2015(Article ID 196107), 11.","DOI":"10.1155\/2015\/196107"},{"key":"10.1016\/j.eswa.2022.117828_b0070","doi-asserted-by":"crossref","unstructured":"Eghbal Ahmadi, M. H., Royaee, S. J., Tayyebi, S., & Bozorgmehry Boozarjomehry, R. (2020). A new insight into implementing Mamdani fuzzy inference system for dynamic process modeling: Application on flash separator fuzzy dynamic modeling. Engineering Applications of Artificial Intelligence, 90(November 2019), 103485. doi:10.1016\/j.engappai.2020.103485.","DOI":"10.1016\/j.engappai.2020.103485"},{"key":"10.1016\/j.eswa.2022.117828_b0075","article-title":"FRAM AHP approach to analyse offshore oil well drilling and construction focused on human factors","author":"Fran\u00e7a","year":"2019","journal-title":"Cognition, Technology and Work."},{"key":"10.1016\/j.eswa.2022.117828_b0080","article-title":"Analysing human factors and non - technical skills in offshore drilling operations using FRAM (functional resonance analysis method)","author":"Fran\u00e7a","year":"2020","journal-title":"Cognition, Technology & Work."},{"issue":"August","key":"10.1016\/j.eswa.2022.117828_b0085","article-title":"Customer classification: A Mamdani fuzzy inference system standpoint for modifying the failure mode and effect analysis based three dimensional approach","volume":"186","author":"Geramian","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117828_b0090","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1016\/j.jclepro.2018.06.106","article-title":"A comparative outline for quantifying risk ratings in occupational health and safety risk assessment","volume":"196","author":"Gul","year":"2018","journal-title":"Journal of Cleaner Production"},{"key":"10.1016\/j.eswa.2022.117828_b0095","unstructured":"Hill, R. (2019). FMV PRO 2.0.2. 13th FRAMily Meeting. http:\/\/www.puroresu.com\/wrestlers\/londos\/death.html."},{"key":"10.1016\/j.eswa.2022.117828_b0100","doi-asserted-by":"crossref","unstructured":"Hirose, T., & Sawaragi, T. (2020). Extended FRAM model based on cellular automaton to clarify complexity of socio-technical systems and improve their safety. Safety Science, 123(June 2019), 104556. doi:10.1016\/j.ssci.2019.104556.","DOI":"10.1016\/j.ssci.2019.104556"},{"issue":"2","key":"10.1016\/j.eswa.2022.117828_b0105","first-page":"1","article-title":"Safety analysis for resilient complex socio-technical systems with an extended functional resonance analysis method","volume":"2","author":"Hirose","year":"2017","journal-title":"International Journal of Astronautics and Aeronautical Engineering"},{"year":"2012","series-title":"FRAM: The Functional Resonance Analysis Method - Modelling the Complex. Socio-technical Systems","author":"Hollnagel","key":"10.1016\/j.eswa.2022.117828_b0110"},{"key":"10.1016\/j.eswa.2022.117828_b0115","article-title":"Resilience Engineering: Concepts and precepts","author":"Hollnagel","year":"2006","journal-title":"Ashgate"},{"key":"10.1016\/j.eswa.2022.117828_b0120","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/0165-0114(95)00185-9","article-title":"Aggregation of fuzzy opinions under group decision making","volume":"79","author":"Hsu","year":"1996","journal-title":"Fuzzy Sets and Systems"},{"issue":"1","key":"10.1016\/j.eswa.2022.117828_b0125","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1109\/TR.2020.2973431","article-title":"Railway Dangerous Goods Transportation System Risk Assessment: An Approach Combining FMEA with Pessimistic-Optimistic Fuzzy Information Axiom Considering Acceptable Risk Coefficient","volume":"70","author":"Huang","year":"2021","journal-title":"IEEE Transactions on Reliability"},{"issue":"1","key":"10.1016\/j.eswa.2022.117828_b0130","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/s10111-017-0455-x","article-title":"Patient visits in poorly developed territories: A case study with community health workers","volume":"20","author":"Jatob\u00e1","year":"2018","journal-title":"Cognition, Technology and Work"},{"key":"10.1016\/j.eswa.2022.117828_b0135","doi-asserted-by":"crossref","unstructured":"Kaya, G. K., & Hocaoglu, M. F. (2020). Semi-quantitative application to the Functional Resonance Analysis Method for supporting safety management in a complex health-care process. Reliability Engineering and System Safety, 202(November 2019), 106970. doi:10.1016\/j.ress.2020.106970.","DOI":"10.1016\/j.ress.2020.106970"},{"key":"10.1016\/j.eswa.2022.117828_b0140","doi-asserted-by":"crossref","unstructured":"Kaya, G. K., Ovali, H. F., & Ozturk, F. (2019). Using the functional resonance analysis method on the drug administration process to assess performance variability. Safety Science, 118(December 2018), 835\u2013840. doi:10.1016\/j.ssci.2019.06.020.","DOI":"10.1016\/j.ssci.2019.06.020"},{"key":"10.1016\/j.eswa.2022.117828_b0145","doi-asserted-by":"crossref","unstructured":"Kaya, G. K., Ozturk, F., & Sariguzel, E. E. (2021). System-based risk analysis in a tram operating system: Integrating Monte Carlo simulation with the functional resonance analysis method. Reliability Engineering and System Safety, 215(August 2020), 107835. doi:10.1016\/j.ress.2021.107835.","DOI":"10.1016\/j.ress.2021.107835"},{"key":"10.1016\/j.eswa.2022.117828_b0150","doi-asserted-by":"crossref","unstructured":"Kim, Y. C., & Yoon, W. C. (2021). Quantitative representation of the functional resonance analysis method for risk assessment. Reliability Engineering & System Safety, 214(July 2020), 107745. doi:10.1016\/j.ress.2021.107745.","DOI":"10.1016\/j.ress.2021.107745"},{"year":"1995","series-title":"Fuzzy sets and fuzzy logic: Theory and applications","author":"Klir","key":"10.1016\/j.eswa.2022.117828_b0155"},{"issue":"OCT","key":"10.1016\/j.eswa.2022.117828_b0160","first-page":"1","article-title":"Fuzzy cognitive map-based modeling of social acceptance to overcome uncertainties in establishing waste biorefinery facilities","volume":"6","author":"Kokkinos","year":"2018","journal-title":"Frontiers in Energy Research"},{"key":"10.1016\/j.eswa.2022.117828_b0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113738","article-title":"A review of fuzzy AHP methods for decision-making with subjective judgements","volume":"161","author":"Liu","year":"2020","journal-title":"Expert Systems with Applications"},{"issue":"11","key":"10.1016\/j.eswa.2022.117828_b0170","doi-asserted-by":"crossref","first-page":"4693","DOI":"10.1109\/TITS.2019.2945333","article-title":"Intelligent Hazard-Risk Prediction Model for Train Control Systems","volume":"21","author":"Liu","year":"2020","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"issue":"7","key":"10.1016\/j.eswa.2022.117828_b0175","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0020-7373(75)80002-2","article-title":"An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller","volume":"1","author":"Mamdani","year":"1975","journal-title":"International Journal of Man-Machine Studies"},{"year":"2017","series-title":"Uncertain Rule-Based Fuzzy Systems. Introduction and new directions","author":"Mendel","key":"10.1016\/j.eswa.2022.117828_b0180"},{"issue":"3","key":"10.1016\/j.eswa.2022.117828_b0185","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1109\/TFUZZ.2017.2735939","article-title":"A New Fuzzy Modeling Framework for Integrated Risk Prognosis and Therapy of Bladder Cancer Patients","volume":"26","author":"Obajemu","year":"2018","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"4","key":"10.1016\/j.eswa.2022.117828_b0190","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1007\/s10111-017-0426-2","article-title":"Modelling complexity in everyday operations: Functional resonance in maritime mooring at quay","volume":"19","author":"Patriarca","year":"2017","journal-title":"Cognition, Technology and Work"},{"issue":"June","key":"10.1016\/j.eswa.2022.117828_b0195","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1016\/j.ssci.2019.05.040","article-title":"Safety intelligence: Incremental proactive risk management for holistic aviation safety performance","volume":"118","author":"Patriarca","year":"2019","journal-title":"Safety Science"},{"issue":"April","key":"10.1016\/j.eswa.2022.117828_b0210","article-title":"Framing the FRAM: A literature review on the functional resonance analysis method","volume":"129","author":"Patriarca","year":"2020","journal-title":"Safety Science"},{"key":"10.1016\/j.eswa.2022.117828_b0215","doi-asserted-by":"crossref","unstructured":"Patriarca, R, Falegnami, A., Costantino, F., & Bilotta, F. (2018). Resilience engineering for socio-technical risk analysis: Application in neuro-surgery. Reliability Engineering and System Safety, 180(November 2017), 321\u2013335. doi:10.1016\/j.ress.2018.08.001.","DOI":"10.1016\/j.ress.2018.08.001"},{"issue":"4","key":"10.1016\/j.eswa.2022.117828_b0220","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1007\/s10111-017-0437-z","article-title":"Proposing leading indicators for blood sampling: Application of a method based on the principles of resilient healthcare","volume":"19","author":"Raben","year":"2017","journal-title":"Cognition, Technology and Work"},{"issue":"July","key":"10.1016\/j.eswa.2022.117828_b0225","article-title":"Risk assessment of sour gas inter-phase onshore pipeline using ANN and fuzzy inference system \u2013 Case study: The south pars gas field","volume":"68","author":"Raeihagh","year":"2020","journal-title":"Journal of Loss Prevention in the Process Industries"},{"issue":"4","key":"10.1016\/j.eswa.2022.117828_b0230","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1007\/s10111-015-0337-z","article-title":"Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM)","volume":"17","author":"Rosa","year":"2015","journal-title":"Cognition, Technology and Work"},{"year":"2010","series-title":"Fuzzy Logic With Engineering Application","author":"Ross","key":"10.1016\/j.eswa.2022.117828_b0235"},{"key":"10.1016\/j.eswa.2022.117828_b0240","doi-asserted-by":"crossref","unstructured":"Salehi, V., Veitch, B., & Smith, D. (2020). Modeling complex socio \u2010 technical systems using the FRAM: A literature review. May, 1\u201325. doi:10.1002\/hfm.20874.","DOI":"10.1002\/hfm.20874"},{"issue":"06","key":"10.1016\/j.eswa.2022.117828_b0245","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.4236\/ajibm.2019.96089","article-title":"A Proposal for a Predictive Performance Assessment Model in Complex Sociotechnical Systems Combining Fuzzy Logic and the Functional Resonance Analysis Method (FRAM)","volume":"09","author":"Slim","year":"2019","journal-title":"American Journal of Industrial and Business Management"},{"issue":"1918","key":"10.1016\/j.eswa.2022.117828_b0250","first-page":"1","article-title":"A Mixed Rough Sets\/Fuzzy Logic Approach for Modelling Systemic Performance Variability with FRAM","volume":"12","author":"Slim","year":"2020","journal-title":"Sustainability"},{"key":"10.1016\/j.eswa.2022.117828_b0255","doi-asserted-by":"crossref","DOI":"10.3390\/app11031049","article-title":"Information Technologies in Complex Socio-Technical Systems Based on Functional Variability : A Case Study on HVAC Maintenance Work Orders","volume":"11","author":"Souza","year":"2021","journal-title":"Applied Sciences"},{"key":"10.1016\/j.eswa.2022.117828_b0260","doi-asserted-by":"crossref","unstructured":"Steen, R., & Ferreira, P. (2020). Resilient flood-risk management at the municipal level through the lens of the Functional Resonance Analysis Model. Reliability Engineering and System Safety, 204(September 2019), 107150. doi:10.1016\/j.ress.2020.107150.","DOI":"10.1016\/j.ress.2020.107150"},{"key":"10.1016\/j.eswa.2022.117828_b0265","series-title":"2017 2nd International Conference on Reliability Systems Engineering","article-title":"Insights into the complexity: A method to manage the complex system by controlling the couplings based on the systemic modeling","author":"Tan","year":"2017"},{"key":"10.1016\/j.eswa.2022.117828_b0270","doi-asserted-by":"crossref","unstructured":"Vries, L. De, & Blig\u00e5rd, L. (2019). Visualising safety\u00a0: The potential for using sociotechnical systems models in prospective safety assessment and design. Safety Science, 111(May 2018), 80\u201393. doi:10.1016\/j.ssci.2018.09.003.","DOI":"10.1016\/j.ssci.2018.09.003"},{"key":"10.1016\/j.eswa.2022.117828_b0275","doi-asserted-by":"crossref","unstructured":"Wahl, A., Kongsvik, T., & Antonsen, S. (2020). Balancing Safety I and Safety II: Learning to manage performance variability at sea using simulator-based training. Reliability Engineering and System Safety, 195(September 2019), 106698. doi:10.1016\/j.ress.2019.106698.","DOI":"10.1016\/j.ress.2019.106698"},{"key":"10.1016\/j.eswa.2022.117828_b0280","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1016\/j.ins.2021.07.054","article-title":"A novel three-way decision approach under hesitant fuzzy information","volume":"578","author":"Wang","year":"2021","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2022.117828_b0285","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.ins.2021.09.018","article-title":"A three-way decision approach with probabilistic dominance relations under intuitionistic fuzzy information","volume":"582","author":"Wang","year":"2022","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2022.117828_b0290","first-page":"43","article-title":"Avoidance of rule explosion by mapping fuzzy systems to a union rule configuration","volume":"1","author":"Weinschenk","year":"2003","journal-title":"IEEE International Conference on Fuzzy Systems"},{"issue":"3","key":"10.1016\/j.eswa.2022.117828_b0295","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0165-0114(93)90252-D","article-title":"On the issue of defuzzification and selection based on a fuzzy set","volume":"55","author":"Yager","year":"1993","journal-title":"Fuzzy Sets and Systems"},{"issue":"June","key":"10.1016\/j.eswa.2022.117828_b0300","article-title":"Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran","volume":"50","author":"Yariyan","year":"2020","journal-title":"International Journal of Disaster Risk Reduction"},{"issue":"June","key":"10.1016\/j.eswa.2022.117828_b0305","article-title":"A FMEA based novel intuitionistic fuzzy approach proposal : Intuitionistic fuzzy advance MCDM and mathematical modeling integration","volume":"183","author":"Yener","year":"2021","journal-title":"Expert Systems With Applications"},{"key":"10.1016\/j.eswa.2022.117828_b0310","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1016\/j.psep.2021.04.037","article-title":"A data-driven approach of quantifying function couplings and identifying paths towards emerging hazards in complex systems","volume":"150","author":"Yu","year":"2021","journal-title":"Process Safety and Environmental Protection"},{"key":"10.1016\/j.eswa.2022.117828_b0315","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/S0019-9958(65)90241-X","article-title":"Fuzzy sets","volume":"8","author":"Zadeh","year":"1965","journal-title":"Information and Control"},{"key":"10.1016\/j.eswa.2022.117828_b0320","doi-asserted-by":"crossref","unstructured":"Zarei, E., Ramavandi, B., Darabi, A. H., & Omidvar, M. (2021). A framework for resilience assessment in process systems using a fuzzy hybrid MCDM model. Journal of Loss Prevention in the Process Industries, 69(August 2020), 104375. doi:10.1016\/j.jlp.2020.104375.","DOI":"10.1016\/j.jlp.2020.104375"},{"key":"10.1016\/j.eswa.2022.117828_b0325","doi-asserted-by":"crossref","unstructured":"Zhan, J., Jiang, H., & Yao, Y. (2020). Three-way multi-attribute decision-making based on outranking relations. IEEE Transactions on Fuzzy Systems, 6706(c), 1\u20131. doi:10.1109\/tfuzz.2020.3007423.","DOI":"10.1109\/TFUZZ.2020.3007423"},{"issue":"c","key":"10.1016\/j.eswa.2022.117828_b0330","first-page":"1","article-title":"A novel three-way decision model based on utility theory in incomplete fuzzy decision systems","volume":"6706","author":"Zhan","year":"2021","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"9","key":"10.1016\/j.eswa.2022.117828_b0335","doi-asserted-by":"crossref","first-page":"2491","DOI":"10.1109\/TFUZZ.2020.3001670","article-title":"On Multicriteria Decision-Making Method Based on a Fuzzy Rough Set Model with Fuzzy \u03b1-Neighborhoods","volume":"29","author":"Zhang","year":"2021","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"4","key":"10.1016\/j.eswa.2022.117828_b0340","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1007\/s10111-016-0391-1","article-title":"Refining operation guidelines with model-checking-aided FRAM to improve manufacturing processes: A case study for aeroengine blade forging","volume":"18","author":"Zheng","year":"2016","journal-title":"Cognition, Technology and Work"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010880?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010880?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:09:22Z","timestamp":1714540162000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422010880"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":66,"alternative-id":["S0957417422010880"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117828","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Soft computing for nonlinear risk assessment of complex socio-technical systems","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117828","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"117828"}}