{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:13:11Z","timestamp":1728177191184},"reference-count":88,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.eswa.2022.117757","type":"journal-article","created":{"date-parts":[[2022,6,7]],"date-time":"2022-06-07T17:12:27Z","timestamp":1654621947000},"page":"117757","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Automatic channel selection using multiobjective X-shaped binary butterfly algorithm for motor imagery classification"],"prefix":"10.1016","volume":"206","author":[{"given":"Anurag","family":"Tiwari","sequence":"first","affiliation":[]},{"given":"Amrita","family":"Chaturvedi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.117757_b0005","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/B978-0-12-813314-9.00010-4","article-title":"Metaheuristic algorithms: A comprehensive review","author":"Abdel-Basset","year":"2018","journal-title":"Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications"},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0010","first-page":"341","article-title":"Optimization of C4. 5 decision tree algorithm for data mining application","volume":"3","author":"Agrawal","year":"2013","journal-title":"International Journal of Emerging Technology and Advanced Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0015","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13634-015-0251-9","article-title":"A review of channel selection algorithms for EEG signal processing","volume":"2015","author":"Alotaiby","year":"2015","journal-title":"EURASIP Journal on Advances in Signal Processing"},{"key":"10.1016\/j.eswa.2022.117757_b0020","doi-asserted-by":"crossref","unstructured":"Al-Qazzaz, N. K., Sabir, M. K., Ali, S., Ahmad, S. A., & Grammer, K. (2019, July). Effective EEG Channels for emotion identification over the brain regions using differential evolution algorithm. In2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(pp. 4703-4706). IEEE.","DOI":"10.1109\/EMBC.2019.8856854"},{"key":"10.1016\/j.eswa.2022.117757_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107393","article-title":"Person identification using EEG channel selection with hybrid flower pollination algorithm","volume":"105","author":"Alyasseri","year":"2020","journal-title":"Pattern Recognition"},{"issue":"6","key":"10.1016\/j.eswa.2022.117757_b0030","doi-asserted-by":"crossref","first-page":"1865","DOI":"10.1109\/TBME.2011.2131142","article-title":"Optimizing the channel selection and classification accuracy in EEG-based BCI","volume":"58","author":"Arvaneh","year":"2011","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0035","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1007\/s00500-018-3102-4","article-title":"Butterfly optimization algorithm: A novel approach for global optimization","volume":"23","author":"Arora","year":"2019","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2022.117757_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compstruc.2016.03.001","article-title":"A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm","volume":"169","author":"Askarzadeh","year":"2016","journal-title":"Computers & Structures"},{"key":"10.1016\/j.eswa.2022.117757_b0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.impact.2019.100179","article-title":"Recursive feature elimination in random forest classification supports nanomaterial grouping","volume":"15","author":"Bahl","year":"2019","journal-title":"NanoImpact"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0050","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1007\/s10462-019-09694-8","article-title":"Filtering techniques for channel selection in motor imagery EEG applications: A survey","volume":"53","author":"Baig","year":"2020","journal-title":"Artificial Intelligence Review"},{"issue":"4","key":"10.1016\/j.eswa.2022.117757_b0055","doi-asserted-by":"crossref","first-page":"3013","DOI":"10.1007\/s00500-020-05360-2","article-title":"A novel x-shaped binary particle swarm optimization","volume":"25","author":"Beheshti","year":"2021","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2022.117757_b0060","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.swevo.2018.03.003","article-title":"Coral reef optimization with substrate layers for medical image registration","volume":"42","author":"Bermejo","year":"2018","journal-title":"Swarm and Evolutionary Computation"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0065","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1109\/TNSRE.2006.875642","article-title":"The BCI competition III: Validating alternative approaches to actual BCI problems","volume":"14","author":"Blankertz","year":"2006","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.eswa.2022.117757_b0070","unstructured":"Brunner, C., Leeb, R., M\u00fcller-Putz, G., Schl\u00f6gl, A., & Pfurtscheller, G. (2008). BCI Competition 2008\u2013Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 16, 1-6."},{"issue":"8","key":"10.1016\/j.eswa.2022.117757_b0075","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1016\/j.patrec.2007.01.002","article-title":"Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis","volume":"28","author":"Brunner","year":"2007","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.eswa.2022.117757_b0080","unstructured":"Ch, R., & MAP, M. (1997). Bayesian learning.book: Machine Learning. McGraw-Hill Science\/Engineering\/Math, 154-200."},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0085","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology (TIST)"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0090","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1002\/ana.410410216","article-title":"Involvement of the ipsilateral motor cortex in finger movements of different complexities","volume":"41","author":"Chen","year":"1997","journal-title":"Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society"},{"key":"10.1016\/j.eswa.2022.117757_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.amc.2020.125535","article-title":"A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean","volume":"389","author":"Chou","year":"2021","journal-title":"Applied Mathematics and Computation"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2022.117757_b0100","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/0166-4328(95)00225-1","article-title":"The neurophysiological basis of motor imagery","volume":"77","author":"Decety","year":"1996","journal-title":"Behavioural Brain Research"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0105","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.jneumeth.2003.10.009","article-title":"EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis","volume":"134","author":"Delorme","year":"2004","journal-title":"Journal of Neuroscience Methods"},{"issue":"4","key":"10.1016\/j.eswa.2022.117757_b0110","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/MCI.2006.329691","article-title":"Ant colony optimization","volume":"1","author":"Dorigo","year":"2006","journal-title":"IEEE Computational Intelligence Magazine"},{"issue":"5","key":"10.1016\/j.eswa.2022.117757_b0115","doi-asserted-by":"crossref","first-page":"936","DOI":"10.1109\/TNSRE.2018.2817924","article-title":"Exploring cognitive flexibility with a noninvasive BCI using simultaneous steady-state visual evoked potentials and sensorimotor rhythms","volume":"26","author":"Edelman","year":"2018","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.eswa.2022.117757_b0120","series-title":"Proceedings of the 2020 12th International Conference on Machine Learning and Computing","first-page":"193","article-title":"February). The binary equilibrium optimization algorithm with sigmoid transfer functions","author":"Gao","year":"2020"},{"key":"10.1016\/j.eswa.2022.117757_b0125","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.bspc.2016.11.018","article-title":"Automatic channel selection in EEG signals for classification of left or right hand movement in Brain Computer Interfaces using improved binary gravitation search algorithm","volume":"33","author":"Ghaemi","year":"2017","journal-title":"Biomedical Signal Processing and Control"},{"key":"10.1016\/j.eswa.2022.117757_b0130","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.neucom.2012.12.003","article-title":"Greedy solutions for the construction of sparse spatial and spatio-spectral filters in brain computer interface applications","volume":"108","author":"Goksu","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117757_b0135","unstructured":"Gu, Q., Li, Z., & Han, J. (2012). Generalized fisher score for feature selection. arXiv preprint arXiv:1202.3725."},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0140","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1007\/s10462-020-09906-6","article-title":"Performance assessment of the metaheuristic optimization algorithms: An exhaustive review","volume":"54","author":"Halim","year":"2021","journal-title":"Artificial Intelligence Review"},{"issue":"6","key":"10.1016\/j.eswa.2022.117757_b0145","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1109\/THMS.2016.2573827","article-title":"Optimized bi-objective EEG channel selection and cross-subject generalization with brain\u2013computer interfaces","volume":"46","author":"Handiru","year":"2016","journal-title":"IEEE Transactions on Human-Machine Systems"},{"key":"10.1016\/j.eswa.2022.117757_b0150","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.neucom.2013.05.005","article-title":"Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG","volume":"121","author":"He","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117757_b0155","doi-asserted-by":"crossref","unstructured":"Herholz, K., Langen, K. J., Schiepers, C., & Mountz, J. M. (2012, November). Brain tumors. InSeminars in nuclear medicine(Vol. 42, No. 6, pp. 356-370). WB Saunders.","DOI":"10.1053\/j.semnuclmed.2012.06.001"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0160","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1038\/scientificamerican0792-66","article-title":"Genetic algorithms","volume":"267","author":"Holland","year":"1992","journal-title":"Scientific American"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0165","doi-asserted-by":"crossref","first-page":"17","DOI":"10.24018\/ejece.2021.5.1.265","article-title":"EEG channel selection using a modified grey wolf optimizer","volume":"5","author":"Hussien","year":"2021","journal-title":"European Journal of Electrical Engineering and Computer Science"},{"key":"10.1016\/j.eswa.2022.117757_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105517","article-title":"An improved runner-root algorithm for solving feature selection problems based on rough sets and neighborhood rough sets","volume":"97","author":"Ibrahim","year":"2020","journal-title":"Applied Soft Computing"},{"issue":"12","key":"10.1016\/j.eswa.2022.117757_b0175","doi-asserted-by":"crossref","first-page":"2270","DOI":"10.1016\/j.patcog.2005.01.012","article-title":"Score normalization in multimodal biometric systems","volume":"38","author":"Jain","year":"2005","journal-title":"Pattern Recognition"},{"first-page":"596","year":"2019","series-title":"Evolving artificial neural networks using butterfly optimization algorithm for data classification","author":"Jalali","key":"10.1016\/j.eswa.2022.117757_b0180"},{"key":"10.1016\/j.eswa.2022.117757_b0185","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.neunet.2019.07.008","article-title":"Correlation-based channel selection and regularized feature optimization for MI-based BCI","volume":"118","author":"Jin","year":"2019","journal-title":"Neural Networks"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0190","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1061\/(ASCE)0733-950X(2001)127:1(45)","article-title":"Genetic algorithm for selecting and scheduling interdependent projects","volume":"127","author":"Jong","year":"2001","journal-title":"Journal of Waterway, Port, Coastal, and Ocean Engineering"},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0195","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1007\/s00707-009-0270-4","article-title":"A novel heuristic optimization method: Charged system search","volume":"213","author":"Kaveh","year":"2010","journal-title":"Acta Mechanica"},{"key":"10.1016\/j.eswa.2022.117757_b0200","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.neucom.2015.02.057","article-title":"Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set","volume":"161","author":"Kee","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117757_b0205","doi-asserted-by":"crossref","unstructured":"Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. InProceedings of ICNN'95-international conference on neural networks(Vol. 4, pp. 1942-1948). IEEE.","DOI":"10.1109\/ICNN.1995.488968"},{"key":"10.1016\/j.eswa.2022.117757_b0210","first-page":"1","article-title":"Cellular automata-based optimised routing for secure data transmission in wireless sensor networks","author":"Khot","year":"2021","journal-title":"Journal of Experimental & Theoretical Artificial Intelligence"},{"issue":"1","key":"10.1016\/j.eswa.2022.117757_b0215","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1109\/MCI.2018.2881647","article-title":"Multimodal fuzzy fusion for enhancing the motor-imagery-based brain computer interface","volume":"14","author":"Ko","year":"2019","journal-title":"IEEE Computational Intelligence Magazine"},{"issue":"4","key":"10.1016\/j.eswa.2022.117757_b0220","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.jneuroling.2004.11.010","article-title":"Gerstmann's syndrome","volume":"18","author":"Lebrun","year":"2005","journal-title":"Journal of Neurolinguistics"},{"key":"10.1016\/j.eswa.2022.117757_b0225","doi-asserted-by":"crossref","unstructured":"Liu, Y., & Zheng, Y. F. (2005, July). One-against-all multi-class SVM classification using reliability measures. InProceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.(Vol. 2, pp. 849-854). IEEE.","DOI":"10.1109\/IJCNN.2005.1555963"},{"key":"10.1016\/j.eswa.2022.117757_b0230","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.advengsoft.2013.12.007","article-title":"Grey wolf optimizer","volume":"69","author":"Mirjalili","year":"2014","journal-title":"Advances in Engineering Software"},{"issue":"8","key":"10.1016\/j.eswa.2022.117757_b0235","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.1109\/TNNLS.2012.2199516","article-title":"Study on the impact of partition-induced dataset shift on $ k $-fold cross-validation","volume":"23","author":"Moreno-Torres","year":"2012","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2022.117757_b0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107291","article-title":"Enhanced butterfly optimization algorithm with a new fuzzy regulator strategy and virtual butterfly concept","volume":"228","author":"Mortazavi","year":"2021","journal-title":"Knowledge-Based Systems"},{"issue":"12","key":"10.1016\/j.eswa.2022.117757_b0245","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1038\/nbt1206-1565","article-title":"What is a support vector machine?","volume":"24","author":"Noble","year":"2006","journal-title":"Nature Biotechnology"},{"issue":"10","key":"10.1016\/j.eswa.2022.117757_b0250","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1111\/dmcn.12246","article-title":"A systematic review of interventions for children with cerebral palsy: State of the evidence","volume":"55","author":"Novak","year":"2013","journal-title":"Developmental Medicine & Child Neurology"},{"key":"10.1016\/j.eswa.2022.117757_b0255","doi-asserted-by":"crossref","unstructured":"Park, C., Looney, D., ur Rehman, N., Ahrabian, A., & Mandic, D. P. (2012). Classification of motor imagery BCI using multivariate empirical mode decomposition.IEEE Transactions on Neural Systems and Rehabilitation Engineering,21(1), 10-22.","DOI":"10.1109\/TNSRE.2012.2229296"},{"key":"10.1016\/j.eswa.2022.117757_b0260","unstructured":"Podder, P., Hasan, M., Islam, M., & Sayeed, M. (2020). Design and implementation of Butterworth, Chebyshev-I and elliptic filter for speech signal analysis.arXiv preprint arXiv:2002.03130."},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0265","doi-asserted-by":"crossref","first-page":"1587","DOI":"10.1016\/j.eswa.2007.11.051","article-title":"A novel hybrid intelligent method based on C4. 5 decision tree classifier and one-against-all approach for multi-class classification problems","volume":"36","author":"Polat","year":"2009","journal-title":"Expert Systems with Applications"},{"issue":"11","key":"10.1016\/j.eswa.2022.117757_b0270","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1016\/0167-8655(94)90127-9","article-title":"Floating search methods in feature selection","volume":"15","author":"Pudil","year":"1994","journal-title":"Pattern recognition letters"},{"key":"10.1016\/j.eswa.2022.117757_b0275","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.neucom.2016.05.035","article-title":"Improved SFFS method for channel selection in motor imagery based BCI","volume":"207","author":"Qiu","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117757_b0280","unstructured":"Quinlan, J. R. (1996, August). Bagging, boosting, and C4. 5. InAaai\/iaai, Vol. 1(pp. 725-730)."},{"key":"10.1016\/j.eswa.2022.117757_b0285","doi-asserted-by":"crossref","unstructured":"Rao, V. S., Srinivas, K., Sujini, G. N., & Kumar, G. N. (2014). Protein-protein interaction detection: methods and analysis.International Journal of Proteomics,2014.","DOI":"10.1155\/2014\/147648"},{"issue":"2117","key":"10.1016\/j.eswa.2022.117757_b0290","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.1098\/rspa.2009.0502","article-title":"Multivariate empirical mode decomposition","volume":"466","author":"Rehman","year":"2010","journal-title":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences"},{"key":"10.1016\/j.eswa.2022.117757_b0295","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.eswa.2016.06.006","article-title":"EEG-based person identification through binary flower pollination algorithm","volume":"62","author":"Rodrigues","year":"2016","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117757_b0300","doi-asserted-by":"crossref","first-page":"235","DOI":"10.3389\/fnins.2018.00235","article-title":"Study of resting-state functional connectivity networks using EEG electrodes position as seed","volume":"12","author":"Rojas","year":"2018","journal-title":"Frontiers in Neuroscience"},{"key":"10.1016\/j.eswa.2022.117757_b0305","series-title":"Feature extraction","first-page":"463","article-title":"Information gain, correlation and support vector machines","author":"Roobaert","year":"2006"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0310","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s00221-003-1590-6","article-title":"Optic ataxia revisited","volume":"153","author":"Rossetti","year":"2003","journal-title":"Experimental Brain Research"},{"key":"10.1016\/j.eswa.2022.117757_b0315","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.104079","article-title":"A hybrid feature selection method based on information theory and binary butterfly optimization algorithm","volume":"97","author":"Sadeghian","year":"2021","journal-title":"Engineering Applications of Artificial Intelligence"},{"issue":"3","key":"10.1016\/j.eswa.2022.117757_b0320","first-page":"2701","article-title":"A study on normalization techniques for privacy preserving data mining","volume":"5","author":"Saranya","year":"2013","journal-title":"International Journal of Engineering and Technology (IJET)"},{"key":"10.1016\/j.eswa.2022.117757_b0325","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.neucom.2021.02.051","article-title":"A binary harmony search algorithm as channel selection method for motor imagery-based BCI","volume":"443","author":"Shi","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117757_b0330","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.cobeha.2019.02.003","article-title":"Creativity comes in waves: An EEG-focused exploration of the creative brain","volume":"27","author":"Stevens","year":"2019","journal-title":"Current Opinion in Behavioral Sciences"},{"issue":"827","key":"10.1016\/j.eswa.2022.117757_b0335","first-page":"188","article-title":"Theory of support vector machines","volume":"117","author":"Stitson","year":"1996","journal-title":"University of London"},{"key":"10.1016\/j.eswa.2022.117757_b0340","doi-asserted-by":"crossref","unstructured":"Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. InFoundations of genetic algorithms(Vol. 1, pp. 94-101). Elsevier.","DOI":"10.1016\/B978-0-08-050684-5.50009-4"},{"key":"10.1016\/j.eswa.2022.117757_b0345","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113285","article-title":"Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network","volume":"149","author":"Tang","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117757_b0350","doi-asserted-by":"crossref","first-page":"55","DOI":"10.3389\/fnins.2012.00055","article-title":"Review of the BCI competition IV","volume":"6","author":"Tangermann","year":"2012","journal-title":"Frontiers in Neuroscience"},{"issue":"5","key":"10.1016\/j.eswa.2022.117757_b0355","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1111\/j.1528-1167.2005.11404.x","article-title":"Intracranial EEG substrates of scalp EEG interictal spikes","volume":"46","author":"Tao","year":"2005","journal-title":"Epilepsia"},{"issue":"4","key":"10.1016\/j.eswa.2022.117757_b0360","first-page":"1","article-title":"Performance study on rule-based classification techniques across multiple database relations","volume":"5","author":"Thangaraj","year":"2013","journal-title":"International Journal of Applied Information Systems"},{"key":"10.1016\/j.eswa.2022.117757_b0365","doi-asserted-by":"crossref","unstructured":"Tiwari, A., & Chaturvedi, A. (2019, November). A multiclass EEG signal classification model using spatial feature extraction and XGBoost algorithm. In2019 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)(pp. 4169-4175). IEEE.","DOI":"10.1109\/IROS40897.2019.8967868"},{"key":"10.1016\/j.eswa.2022.117757_b0370","doi-asserted-by":"crossref","first-page":"126698","DOI":"10.1109\/ACCESS.2021.3110882","article-title":"A novel channel selection method for BCI classification using dynamic channel relevance","volume":"9","author":"Tiwari","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.117757_b0375","doi-asserted-by":"crossref","first-page":"194303","DOI":"10.1109\/ACCESS.2020.3033757","article-title":"Dynamic butterfly optimization algorithm for feature selection","volume":"8","author":"Tubishat","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.117757_b0380","doi-asserted-by":"crossref","unstructured":"Utama, D. M., Widodo, D. S., Ibrahim, M. F., & Dewi, S. K. (2020). A New Hybrid Butterfly Optimization Algorithm for Green Vehicle Routing Problem.Journal of Advanced Transportation,2020.","DOI":"10.1155\/2020\/8834502"},{"key":"10.1016\/j.eswa.2022.117757_b0385","doi-asserted-by":"crossref","unstructured":"Vapnik, V. (1998). The support vector method of function estimation. InNonlinear modeling(pp. 55-85). Springer, Boston, MA.","DOI":"10.1007\/978-1-4615-5703-6_3"},{"issue":"9557","key":"10.1016\/j.eswa.2022.117757_b0390","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/S0140-6736(07)60111-1","article-title":"Huntington's disease","volume":"369","author":"Walker","year":"2007","journal-title":"The Lancet"},{"key":"10.1016\/j.eswa.2022.117757_b0395","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.measurement.2016.02.059","article-title":"Detection of motor imagery EEG signals employing Na\u00efve Bayes based learning process","volume":"86","author":"Wang","year":"2016","journal-title":"Measurement"},{"key":"10.1016\/j.eswa.2022.117757_b0400","doi-asserted-by":"crossref","unstructured":"Wang, Y., Gao, S., & Gao, X. (2006, January). Common spatial pattern method for channel selelction in motor imagery based brain-computer interface. In2005 IEEE engineering in medicine and biology 27th annual conference(pp. 5392-5395). IEEE.","DOI":"10.1109\/IEMBS.2005.1615701"},{"key":"10.1016\/j.eswa.2022.117757_b0405","doi-asserted-by":"crossref","first-page":"143303","DOI":"10.1109\/ACCESS.2019.2944273","article-title":"Channel selection method for eeg emotion recognition using normalized mutual information","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.eswa.2022.117757_b0410","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1016\/j.apmr.2008.10.013","article-title":"Incidence of gait abnormalities after traumatic brain injury","volume":"90","author":"Williams","year":"2009","journal-title":"Archives of Physical Medicine and Rehabilitation"},{"issue":"5","key":"10.1016\/j.eswa.2022.117757_b0415","doi-asserted-by":"crossref","first-page":"1166","DOI":"10.1109\/TBME.2018.2799661","article-title":"A brain\u2013computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli","volume":"65","author":"Xu","year":"2018","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0420","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.artmed.2012.02.001","article-title":"Channel selection and classification of electroencephalogram signals: An artificial neural network and genetic algorithm-based approach","volume":"55","author":"Yang","year":"2012","journal-title":"Artificial Intelligence in Medicine"},{"issue":"2","key":"10.1016\/j.eswa.2022.117757_b0430","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1504\/IJBIC.2010.032124","article-title":"Firefly algorithm, stochastic test functions and design optimisation","volume":"2","author":"Yang","year":"2010","journal-title":"International Journal of Bio-inspired Computation"},{"issue":"10","key":"10.1016\/j.eswa.2022.117757_b0440","doi-asserted-by":"crossref","first-page":"1558","DOI":"10.3390\/s16101558","article-title":"ReliefF-based EEG sensor selection methods for emotion recognition","volume":"16","author":"Zhang","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2022.117757_b0445","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cor.2014.10.008","article-title":"Water wave optimization: A new nature-inspired metaheuristic","volume":"55","author":"Zheng","year":"2015","journal-title":"Computers & Operations Research"},{"issue":"9","key":"10.1016\/j.eswa.2022.117757_b0450","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0162657","article-title":"A fully automated trial selection method for optimization of motor imagery based brain-computer interface","volume":"11","author":"Zhou","year":"2016","journal-title":"PloS One"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010351?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010351?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,26]],"date-time":"2024-09-26T15:58:32Z","timestamp":1727366312000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422010351"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":88,"alternative-id":["S0957417422010351"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117757","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automatic channel selection using multiobjective X-shaped binary butterfly algorithm for motor imagery classification","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117757","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"117757"}}