{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:49:34Z","timestamp":1740116974342,"version":"3.37.3"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,6,9]],"date-time":"2023-06-09T00:00:00Z","timestamp":1686268800000},"content-version":"am","delay-in-days":220,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100005711","name":"Defense Logistics Agency","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005711","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.eswa.2022.117753","type":"journal-article","created":{"date-parts":[[2022,6,9]],"date-time":"2022-06-09T19:58:07Z","timestamp":1654804687000},"page":"117753","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Commodity demand forecasting using modulated rank reduction for humanitarian logistics planning"],"prefix":"10.1016","volume":"206","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6163-1741","authenticated-orcid":false,"given":"Donovan","family":"Fuqua","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4983-9651","authenticated-orcid":false,"given":"Steven","family":"Hespeler","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.eswa.2022.117753_b1","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1007\/s11222-013-9375-7","article-title":"A novel hybrid RBF neural networks model as a forecaster","volume":"24","author":"Akbilgic","year":"2014","journal-title":"Statistics and Computing"},{"key":"10.1016\/j.eswa.2022.117753_b2","first-page":"1","article-title":"Big data and disaster management: a systematic review and agenda for future research","author":"Akter","year":"2017","journal-title":"Annals of Operations Research"},{"key":"10.1016\/j.eswa.2022.117753_b3","series-title":"SPE annual technical conference and exhibition","article-title":"A machine learning approach to optimize shale gas supply chain networks","author":"Asala","year":"2017"},{"issue":"1","key":"10.1016\/j.eswa.2022.117753_b4","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.ijpe.2009.09.008","article-title":"Coordination in humanitarian relief chains: Practices, challenges and opportunities","volume":"126","author":"Balcik","year":"2010","journal-title":"International Journal of Production Economics"},{"issue":"7","key":"10.1016\/j.eswa.2022.117753_b5","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0180944","article-title":"A deep learning framework for financial time series using stacked autoencoders and long-short term memory","volume":"12","author":"Bao","year":"2017","journal-title":"PLoS One"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b6","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1002\/asmb.658","article-title":"Bankruptcy prediction by generalized additive models","volume":"23","author":"Berg","year":"2007","journal-title":"Applied Stochastic Models in Business and Industry"},{"key":"10.1016\/j.eswa.2022.117753_b7","series-title":"Innovations and advances in computer sciences and engineering","first-page":"343","article-title":"Robust learning algorithm for networks of neuro-fuzzy units","author":"Bodyanskiy","year":"2010"},{"issue":"3","key":"10.1016\/j.eswa.2022.117753_b8","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1145\/1970392.1970395","article-title":"Robust principal component analysis?","volume":"58","author":"Cand\u00e8s","year":"2011","journal-title":"Journal of the ACM"},{"key":"10.1016\/j.eswa.2022.117753_b9","series-title":"Joint European conference on machine learning and knowledge discovery in databases","first-page":"36","article-title":"Robust, deep and inductive anomaly detection","author":"Chalapathy","year":"2017"},{"year":"2018","series-title":"Anomaly detection using one-class neural networks","author":"Chalapathy","key":"10.1016\/j.eswa.2022.117753_b10"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b11","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1111\/j.1745-493X.2012.03267.x","article-title":"Humanitarian and disaster relief supply chains: a matter of life and death","volume":"48","author":"Day","year":"2012","journal-title":"Journal of Supply Chain Management"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b12","first-page":"127","article-title":"Identification of multivariate outliers: a performance study","volume":"34","author":"Filzmoser","year":"2005","journal-title":"Austrian Journal of Statistics"},{"issue":"474","key":"10.1016\/j.eswa.2022.117753_b13","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1198\/016214505000001131","article-title":"Outlier detection in multivariate time series by projection pursuit","volume":"101","author":"Galeano","year":"2006","journal-title":"Journal of the American Statistical Association"},{"year":"2017","series-title":"Python implementation of R-PCA","author":"Ganguli","key":"10.1016\/j.eswa.2022.117753_b14"},{"key":"10.1016\/j.eswa.2022.117753_b15","series-title":"Proceedings of the IEEE-INNS-ENNS international joint conference on neural networks. IJCNN 2000. neural computing: new challenges and perspectives for the new millennium. Vol. 3","first-page":"189","article-title":"Recurrent nets that time and count","author":"Gers","year":"2000"},{"issue":"10","key":"10.1016\/j.eswa.2022.117753_b16","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1109\/TNNLS.2016.2582924","article-title":"LSTM: A search space odyssey","volume":"28","author":"Greff","year":"2017","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"3","key":"10.1016\/j.eswa.2022.117753_b17","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1111\/j.2517-6161.1992.tb01449.x","article-title":"Identifying multiple outliers in multivariate data","volume":"54","author":"Hadi","year":"1992","journal-title":"Journal of the Royal Statistical Society. Series B. Statistical Methodology"},{"key":"10.1016\/j.eswa.2022.117753_b18","series-title":"2018 IEEE international conference on edge computing","first-page":"93","article-title":"Edge-centric efficient regression analytics","author":"Harth","year":"2018"},{"year":"2015","series-title":"AR 70-12, fuels and lubricants standardization policy for equipment design, operation, and logistic support","author":"Headquarters United States Army","key":"10.1016\/j.eswa.2022.117753_b19"},{"issue":"8","key":"10.1016\/j.eswa.2022.117753_b20","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.117753_b21","unstructured":"Howden,\u00a0M. (2009). How humanitarian logistics information systems can improve humanitarian supply chains: a view from the field. In Proceedings of the 6th international ISCRAM conference, Gothenburg, Sweden."},{"year":"2000","series-title":"Decision support system for the management of an agile supply chain","author":"Huang","key":"10.1016\/j.eswa.2022.117753_b22"},{"key":"10.1016\/j.eswa.2022.117753_b23","series-title":"Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining","first-page":"387","article-title":"Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding","author":"Hundman","year":"2018"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.eswa.2022.117753_b24"},{"key":"10.1016\/j.eswa.2022.117753_b25","article-title":"Short-term residential load forecasting based on LSTM recurrent neural network","author":"Kong","year":"2017","journal-title":"IEEE Transactions on Smart Grids"},{"issue":"3","key":"10.1016\/j.eswa.2022.117753_b26","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s12544-015-0170-8","article-title":"Short-term traffic flow prediction using seasonal ARIMA model with limited input data","volume":"7","author":"Kumar","year":"2015","journal-title":"European Transport Research Review"},{"issue":"4","key":"10.1016\/j.eswa.2022.117753_b27","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"LeCun","year":"1989","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.117753_b28","series-title":"Artificial intelligence and statistics","first-page":"703","article-title":"Exact subspace segmentation and outlier detection by low-rank representation","author":"Liu","year":"2012"},{"year":"2016","series-title":"LSTM-based encoder-decoder for multi-sensor anomaly detection","author":"Malhotra","key":"10.1016\/j.eswa.2022.117753_b29"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b30","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1108\/13598540610652492","article-title":"Humanitarian aid: an agile supply chain?","volume":"11","author":"Oloruntoba","year":"2006","journal-title":"Supply Chain Management: An International Journal"},{"key":"10.1016\/j.eswa.2022.117753_b31","doi-asserted-by":"crossref","first-page":"1108","DOI":"10.1016\/j.jclepro.2016.03.059","article-title":"The role of big data in explaining disaster resilience in supply chains for sustainability","volume":"142","author":"Papadopoulos","year":"2017","journal-title":"Journal of Cleaner Production"},{"year":"2018","series-title":"Learning deep features for one-class classification","author":"Perera","key":"10.1016\/j.eswa.2022.117753_b32"},{"issue":"1","key":"10.1016\/j.eswa.2022.117753_b33","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/2047-2501-2-3","article-title":"Big data analytics in healthcare: promise and potential","volume":"2","author":"Raghupathi","year":"2014","journal-title":"Health Information Science and Systems"},{"key":"10.1016\/j.eswa.2022.117753_b34","unstructured":"Ruff,\u00a0L., G\u00f6rnitz,\u00a0N., Deecke,\u00a0L., Siddiqui,\u00a0S. A., Vandermeulen,\u00a0R., Binder,\u00a0A., et al. (2018). Deep one-class classification. In International conference on machine learning (pp. 4390\u20134399)."},{"issue":"1","key":"10.1016\/j.eswa.2022.117753_b35","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1111\/jbl.12082","article-title":"Data science, predictive analytics, and big data in supply chain management: current state and future potential","volume":"36","author":"Schoenherr","year":"2015","journal-title":"Journal of Business Logistics"},{"issue":"4","key":"10.1016\/j.eswa.2022.117753_b36","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1093\/biomet\/87.4.789","article-title":"Outliers in multivariate time series","volume":"87","author":"Tsay","year":"2000","journal-title":"Biometrika"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b37","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1111\/jbl.12010","article-title":"Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management","volume":"34","author":"Waller","year":"2013","journal-title":"Journal of Business Logistics"},{"issue":"2","key":"10.1016\/j.eswa.2022.117753_b38","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1049\/iet-its.2016.0208","article-title":"LSTM network: a deep learning approach for short-term traffic forecast","volume":"11","author":"Zhao","year":"2017","journal-title":"IET Intelligent Transport Systems"},{"key":"10.1016\/j.eswa.2022.117753_b39","series-title":"2017 51st Annual conference on information sciences and systems","first-page":"1","article-title":"Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network","author":"Zheng","year":"2017"},{"key":"10.1016\/j.eswa.2022.117753_b40","series-title":"2010 IEEE international symposium on information theory","first-page":"1518","article-title":"Stable principal component pursuit","author":"Zhou","year":"2010"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010314?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422010314?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:05:54Z","timestamp":1714539954000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422010314"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":40,"alternative-id":["S0957417422010314"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117753","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Commodity demand forecasting using modulated rank reduction for humanitarian logistics planning","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117753","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"117753"}}