{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:07:10Z","timestamp":1735585630327},"reference-count":79,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,6,8]],"date-time":"2022-06-08T00:00:00Z","timestamp":1654646400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.eswa.2022.117693","type":"journal-article","created":{"date-parts":[[2022,6,4]],"date-time":"2022-06-04T00:52:19Z","timestamp":1654303939000},"page":"117693","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["CasSeqGCN: Combining network structure and temporal sequence to predict information cascades"],"prefix":"10.1016","volume":"206","author":[{"given":"Yansong","family":"Wang","sequence":"first","affiliation":[]},{"given":"Xiaomeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yijun","family":"Ran","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0106-655X","authenticated-orcid":false,"given":"Rados\u0142aw","family":"Michalski","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2337-2857","authenticated-orcid":false,"given":"Tao","family":"Jia","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.117693_b1","doi-asserted-by":"crossref","first-page":"1268","DOI":"10.1109\/TMM.2013.2265080","article-title":"Sensing trending topics in twitter","volume":"15","author":"Aiello","year":"2013","journal-title":"IEEE Transactions on Multimedia"},{"key":"10.1016\/j.eswa.2022.117693_b2","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1111\/coin.12017","article-title":"A survey of techniques for event detection in twitter","volume":"31","author":"Atefeh","year":"2015","journal-title":"Computational Intelligence"},{"issue":"485","key":"10.1016\/j.eswa.2022.117693_b3","article-title":"A3t-gcn: Attention temporal graph convolutional network for traffic forecasting","volume":"10","author":"Bai","year":"2021","journal-title":"ISPRS International Journal of Geo-Information"},{"key":"10.1016\/j.eswa.2022.117693_b4","doi-asserted-by":"crossref","unstructured":"Bakshy, E., Hofman, J. M., Mason, W. A., & Watts, D. J. (2011). Everyone\u2019s an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 65\u201374).","DOI":"10.1145\/1935826.1935845"},{"key":"10.1016\/j.eswa.2022.117693_b5","doi-asserted-by":"crossref","unstructured":"Bao, P., Shen, H.-W., Jin, X., & Cheng, X.-Q. (2015). Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes. In Proceedings of the 24th international conference on world wide web (pp. 9\u201310).","DOI":"10.1145\/2740908.2742744"},{"key":"10.1016\/j.eswa.2022.117693_b6","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1126\/science.286.5439.509","article-title":"Emergence of scaling in random networks","volume":"286","author":"Barab\u00e1si","year":"1999","journal-title":"Science"},{"key":"10.1016\/j.eswa.2022.117693_b7","doi-asserted-by":"crossref","unstructured":"Bourigault, S., Lagnier, C., Lamprier, S., Denoyer, L., & Gallinari, P. (2014). Learning social network embeddings for predicting information diffusion. In Proceedings of the 7th ACM international conference on Web search and data mining (pp. 393\u2013402).","DOI":"10.1145\/2556195.2556216"},{"key":"10.1016\/j.eswa.2022.117693_b8","doi-asserted-by":"crossref","unstructured":"Bourigault, S., Lamprier, S., & Gallinari, P. (2016). Representation learning for information diffusion through social networks: an embedded cascade model. In Proceedings of the ninth ACM international conference on web search and data mining (pp. 573\u2013582).","DOI":"10.1145\/2835776.2835817"},{"key":"10.1016\/j.eswa.2022.117693_b9","doi-asserted-by":"crossref","unstructured":"Cao, Q., Shen, H., Cen, K., Ouyang, W., & Cheng, X. (2017). Deephawkes: Bridging the gap between prediction and understanding of information cascades. In Proceedings of the 2017 ACM on conference on information and knowledge management (pp. 1149\u20131158).","DOI":"10.1145\/3132847.3132973"},{"key":"10.1016\/j.eswa.2022.117693_b10","doi-asserted-by":"crossref","unstructured":"Cao, Q., Shen, H., Gao, J., Wei, B., & Cheng, X. (2020). Popularity prediction on social platforms with coupled graph neural networks. In Proceedings of the 13th international conference on web search and data mining (pp. 70\u201378).","DOI":"10.1145\/3336191.3371834"},{"key":"10.1016\/j.eswa.2022.117693_b11","doi-asserted-by":"crossref","first-page":"1194","DOI":"10.1126\/science.1185231","article-title":"The spread of behavior in an online social network experiment","volume":"329","author":"Centola","year":"2010","journal-title":"Science"},{"key":"10.1016\/j.eswa.2022.117693_b12","series-title":"2019 IEEE 35th international conference on data engineering (ICDE)","first-page":"770","article-title":"Information diffusion prediction via recurrent cascades convolution","author":"Chen","year":"2019"},{"key":"10.1016\/j.eswa.2022.117693_b13","doi-asserted-by":"crossref","unstructured":"Cheng, J., Adamic, L., Dow, P. A., Kleinberg, J. M., & Leskovec, J. (2014). Can cascades be predicted? In Proceedings of the 23rd international conference on World wide web (pp. 925\u2013936).","DOI":"10.1145\/2566486.2567997"},{"key":"10.1016\/j.eswa.2022.117693_b14","series-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"Chung","year":"2014"},{"key":"10.1016\/j.eswa.2022.117693_b15","doi-asserted-by":"crossref","unstructured":"Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W., & Yang, S. (2013). Cascading outbreak prediction in networks: a data-driven approach. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 901\u2013909).","DOI":"10.1145\/2487575.2487639"},{"key":"10.1016\/j.eswa.2022.117693_b16","doi-asserted-by":"crossref","first-page":"2810","DOI":"10.1109\/TCYB.2015.2489841","article-title":"Event detection in twitter microblogging","volume":"46","author":"Doulamis","year":"2015","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.eswa.2022.117693_b17","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1016\/j.procs.2015.07.165","article-title":"Credit risk evaluation based on social media","volume":"55","author":"Fei","year":"2015","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.eswa.2022.117693_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116260","article-title":"Aecasn: An information cascade predictor by learning the structural representation of the whole cascade network with autoencoder","volume":"191","author":"Feng","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b19","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.eswa.2019.05.047","article-title":"Anomalous information diffusion in social networks: Twitter and digg","volume":"134","author":"Foroozani","year":"2019","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b20","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1023\/A:1011122126881","article-title":"Talk of the network: A complex systems look at the underlying process of word-of-mouth","volume":"12","author":"Goldenberg","year":"2001","journal-title":"Marketing Letters"},{"key":"10.1016\/j.eswa.2022.117693_b21","series-title":"International conference on machine learning","first-page":"666","article-title":"Modeling information propagation with survival theory","author":"Gomez-Rodriguez","year":"2013"},{"key":"10.1016\/j.eswa.2022.117693_b22","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.asej.2016.01.012","article-title":"A review on application of data mining techniques to combat natural disasters","volume":"9","author":"Goswami","year":"2018","journal-title":"Ain Shams Engineering Journal"},{"key":"10.1016\/j.eswa.2022.117693_b23","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1007\/s10115-017-1143-0","article-title":"Learning sequential features for cascade outbreak prediction","volume":"57","author":"Gou","year":"2018","journal-title":"Knowledge and Information Systems"},{"key":"10.1016\/j.eswa.2022.117693_b24","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2022.117693_b25","doi-asserted-by":"crossref","unstructured":"Hong, L., Dan, O., & Davison, B. D. (2011). Predicting popular messages in twitter. In Proceedings of the 20th international conference companion on World wide web (pp. 57\u201358).","DOI":"10.1145\/1963192.1963222"},{"key":"10.1016\/j.eswa.2022.117693_b26","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0129804","article-title":"An analysis of the matching hypothesis in networks","volume":"10","author":"Jia","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.eswa.2022.117693_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41562-017-0078","article-title":"Quantifying patterns of research-interest evolution","volume":"1","author":"Jia","year":"2017","journal-title":"Nature Human Behaviour"},{"key":"10.1016\/j.eswa.2022.117693_b28","series-title":"2018 fifth international conference on social networks analysis, management and security (SNAMS)","first-page":"72","article-title":"Cas2vec: Network-agnostic cascade prediction in online social networks","author":"Kefato","year":"2018"},{"key":"10.1016\/j.eswa.2022.117693_b29","doi-asserted-by":"crossref","unstructured":"Kempe, D., Kleinberg, J., & Tardos, \u00c9. (2003). Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 137\u2013146).","DOI":"10.1145\/956750.956769"},{"key":"10.1016\/j.eswa.2022.117693_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114168","article-title":"An efficient path-based approach for influence maximization in social networks","volume":"167","author":"Kianian","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b31","series-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","year":"2016"},{"key":"10.1016\/j.eswa.2022.117693_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.ijdrr.2020.101926","article-title":"Social media and early warning systems for natural disasters: A case study of typhoon etau in Japan","volume":"52","author":"Kitazawa","year":"2021","journal-title":"International Journal of Disaster Risk Reduction"},{"key":"10.1016\/j.eswa.2022.117693_b33","doi-asserted-by":"crossref","unstructured":"Kupavskii, A., Umnov, A., Gusev, G., & Serdyukov, P. (2013). Predicting the audience size of a tweet. In Proceedings of the international AAAI conference on web and social media, Vol. 7.","DOI":"10.1609\/icwsm.v7i1.14454"},{"key":"10.1016\/j.eswa.2022.117693_b34","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.neucom.2011.04.040","article-title":"Modeling and predicting the popularity of online contents with cox proportional hazard regression model","volume":"76","author":"Lee","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2022.117693_b35","series-title":"2012 IEEE 28Th international conference on data engineering","first-page":"1273","article-title":"Tedas: A twitter-based event detection and analysis system","author":"Li","year":"2012"},{"key":"10.1016\/j.eswa.2022.117693_b36","doi-asserted-by":"crossref","unstructured":"Li, C., Ma, J., Guo, X., & Mei, Q. (2017). Deepcas: An end-to-end predictor of information cascades. In Proceedings of the 26th international conference on World Wide Web (pp. 577\u2013586).","DOI":"10.1145\/3038912.3052643"},{"key":"10.1016\/j.eswa.2022.117693_b37","doi-asserted-by":"crossref","unstructured":"Liao, D., Xu, J., Li, G., Huang, W., Liu, W., & Li, J. (2019). Popularity prediction on online articles with deep fusion of temporal process and content features. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33 (pp. 200\u2013207).","DOI":"10.1609\/aaai.v33i01.3301200"},{"key":"10.1016\/j.eswa.2022.117693_b38","series-title":"Chinese national conference on social media processing","first-page":"1","article-title":"Learning cost-effective social embedding for cascade prediction","author":"Liu","year":"2016"},{"key":"10.1016\/j.eswa.2022.117693_b39","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113785","article-title":"Rc-tweet: modeling and predicting the popularity of tweets through the dynamics of a capacitor","volume":"163","author":"Lymperopoulos","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b40","doi-asserted-by":"crossref","first-page":"1399","DOI":"10.1002\/asi.22844","article-title":"On predicting the popularity of newly emerging hashtags in t witter","volume":"64","author":"Ma","year":"2013","journal-title":"Journal of the American Society for Information Science and Technology"},{"key":"10.1016\/j.eswa.2022.117693_b41","first-page":"1623","article-title":"Forecasting the subway passenger flow under event occurrences with social media","volume":"18","author":"Ni","year":"2016","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2022.117693_b42","doi-asserted-by":"crossref","unstructured":"Ohsaka, N., Sonobe, T., Fujita, S., & Kawarabayashi, K.-i. (2017). Coarsening massive influence networks for scalable diffusion analysis. In Proceedings of the 2017 ACM international conference on management of data (pp. 635\u2013650).","DOI":"10.1145\/3035918.3064045"},{"key":"10.1016\/j.eswa.2022.117693_b43","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701\u2013710).","DOI":"10.1145\/2623330.2623732"},{"key":"10.1016\/j.eswa.2022.117693_b44","doi-asserted-by":"crossref","unstructured":"Pinto, H., Almeida, J. M., & Gon\u00e7alves, M. A. (2013). Using early view patterns to predict the popularity of youtube videos. In Proceedings of the sixth ACM international conference on Web search and data mining (pp. 365\u2013374).","DOI":"10.1145\/2433396.2433443"},{"key":"10.1016\/j.eswa.2022.117693_b45","doi-asserted-by":"crossref","DOI":"10.1063\/5.0011658","article-title":"A generalized linear threshold model for an improved description of the spreading dynamics","volume":"30","author":"Ran","year":"2020","journal-title":"Chaos. An Interdisciplinary Journal of Nonlinear Science"},{"key":"10.1016\/j.eswa.2022.117693_b46","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113183","article-title":"Evolutionary multiobjective optimization to target social network influentials in viral marketing","volume":"147","author":"Robles","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b47","doi-asserted-by":"crossref","unstructured":"Romero, D., Tan, C., & Ugander, J. (2013). On the interplay between social and topical structure. In Proceedings of the international AAAI conference on web and social media, Vol. 7.","DOI":"10.1609\/icwsm.v7i1.14411"},{"key":"10.1016\/j.eswa.2022.117693_b48","series-title":"Dynamic routing between capsules","author":"Sabour","year":"2017"},{"key":"10.1016\/j.eswa.2022.117693_b49","series-title":"Twenty-eighth IAAI conference","article-title":"Deploying nemesis: Preventing foodborne illness by data mining social media","author":"Sadilek","year":"2016"},{"key":"10.1016\/j.eswa.2022.117693_b50","doi-asserted-by":"crossref","first-page":"1644","DOI":"10.1109\/TSP.2013.2238935","article-title":"Discrete signal processing on graphs","volume":"61","author":"Sandryhaila","year":"2013","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.eswa.2022.117693_b51","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.landurbplan.2015.02.020","article-title":"Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information","volume":"142","author":"Shelton","year":"2015","journal-title":"Landscape and Urban Planning"},{"key":"10.1016\/j.eswa.2022.117693_b52","doi-asserted-by":"crossref","unstructured":"Shen, H., Wang, D., Song, C., & Barab\u00e1si, A.-L. (2014). Modeling and predicting popularity dynamics via reinforced Poisson processes. In Proceedings of the AAAI conference on artificial intelligence, Vol. 28.","DOI":"10.1609\/aaai.v28i1.8739"},{"key":"10.1016\/j.eswa.2022.117693_b53","doi-asserted-by":"crossref","unstructured":"Shulman, B., Sharma, A., & Cosley, D. (2016). Predictability of popularity: Gaps between prediction and understanding. In Proceedings of the international AAAI conference on web and social media, Vol. 10.","DOI":"10.1609\/icwsm.v10i1.14748"},{"key":"10.1016\/j.eswa.2022.117693_b54","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.102.052311","article-title":"Emergence of nonlinear crossover under epidemic dynamics in heterogeneous networks","volume":"102","author":"Su","year":"2020","journal-title":"Physical Review E"},{"key":"10.1016\/j.eswa.2022.117693_b55","doi-asserted-by":"crossref","first-page":"13774","DOI":"10.1073\/pnas.1306440110","article-title":"Understanding metropolitan patterns of daily encounters","volume":"110","author":"Sun","year":"2013","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.eswa.2022.117693_b56","series-title":"International semantic web conference","first-page":"529","article-title":"From syntactic structure to semantic relationship: hypernym extraction from definitions by recurrent neural networks using the part of speech information","author":"Tan","year":"2020"},{"key":"10.1016\/j.eswa.2022.117693_b57","doi-asserted-by":"crossref","unstructured":"Tsur, O., & Rappoport, A. (2012). What\u2019s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In Proceedings of the fifth ACM international conference on web search and data mining (pp. 643\u2013652).","DOI":"10.1145\/2124295.2124320"},{"key":"10.1016\/j.eswa.2022.117693_b58","series-title":"NIPS","article-title":"Attention is all you need","author":"Vaswani","year":"2017"},{"key":"10.1016\/j.eswa.2022.117693_b59","series-title":"Ccasgnn: Collaborative cascade prediction based on graph neural networks","author":"Wang","year":"2021"},{"key":"10.1016\/j.eswa.2022.117693_b60","series-title":"2017 IEEE international conference on data mining (ICDM)","first-page":"475","article-title":"Topological recurrent neural network for diffusion prediction","author":"Wang","year":"2017"},{"key":"10.1016\/j.eswa.2022.117693_b61","doi-asserted-by":"crossref","unstructured":"Watts, D. (2016). Computational social science: Exciting progress and future challenges. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 419\u2013419).","DOI":"10.1145\/2939672.2945366"},{"key":"10.1016\/j.eswa.2022.117693_b62","doi-asserted-by":"crossref","unstructured":"Weng, L., Menczer, F., & Ahn, Y.-Y. (2014). Predicting successful memes using network and community structure. In Proceedings of the international AAAI conference on web and social media, Vol. 8.","DOI":"10.1609\/icwsm.v8i1.14530"},{"key":"10.1016\/j.eswa.2022.117693_b63","doi-asserted-by":"crossref","unstructured":"Wu, Q., Gao, Y., Gao, X., Weng, P., & Chen, G. (2019). Dual sequential prediction models linking sequential recommendation and information dissemination. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 447\u2013457).","DOI":"10.1145\/3292500.3330959"},{"key":"10.1016\/j.eswa.2022.117693_b64","first-page":"1","article-title":"Detecting and modelling real percolation and phase transitions of information on social media","author":"Xie","year":"2021","journal-title":"Nature Human Behaviour"},{"key":"10.1016\/j.eswa.2022.117693_b65","series-title":"Independent asymmetric embedding model for cascade prediction on social network","author":"Xie","year":"2021"},{"key":"10.1016\/j.eswa.2022.117693_b66","series-title":"Casgcn: Predicting future cascade growth based on information diffusion graph","author":"Xu","year":"2020"},{"key":"10.1016\/j.eswa.2022.117693_b67","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.116057","article-title":"Forecasting the subway passenger flow under event occurrences with multivariate disturbances","volume":"188","author":"Xue","year":"2022","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.117693_b68","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-017-01892-8","article-title":"Universal model of individual and population mobility on diverse spatial scales","volume":"8","author":"Yan","year":"2017","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2022.117693_b69","doi-asserted-by":"crossref","unstructured":"Yano, T., & Smith, N. (2010). What\u2019s worthy of comment? Content and comment volume in political blogs. In Proceedings of the international AAAI conference on web and social media, Vol. 4.","DOI":"10.1609\/icwsm.v4i1.14062"},{"key":"10.1016\/j.eswa.2022.117693_b70","series-title":"Journal of physics: Conference series, Vol. 1168","article-title":"An overview of overfitting and its solutions","author":"Ying","year":"2019"},{"key":"10.1016\/j.eswa.2022.117693_b71","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-019-11401-8","article-title":"Increasing trend of scientists to switch between topics","volume":"10","author":"Zeng","year":"2019","journal-title":"Nature Communications"},{"key":"10.1016\/j.eswa.2022.117693_b72","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.physrep.2016.07.002","article-title":"Dynamics of information diffusion and its applications on complex networks","volume":"651","author":"Zhang","year":"2016","journal-title":"Physics Reports"},{"key":"10.1016\/j.eswa.2022.117693_b73","series-title":"Joint European conference on machine learning and knowledge discovery in databases","first-page":"524","article-title":"Structure pattern analysis and cascade prediction in social networks","author":"Zhang","year":"2016"},{"key":"10.1016\/j.eswa.2022.117693_b74","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1007\/s10707-019-00376-9","article-title":"Online flu epidemiological deep modeling on disease contact network","volume":"24","author":"Zhao","year":"2020","journal-title":"GeoInformatica"},{"key":"10.1016\/j.eswa.2022.117693_b75","doi-asserted-by":"crossref","first-page":"3848","DOI":"10.1109\/TITS.2019.2935152","article-title":"T-gcn: A temporal graph convolutional network for traffic prediction","volume":"21","author":"Zhao","year":"2019","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2022.117693_b76","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105502","article-title":"Deep collaborative embedding for information cascade prediction","volume":"193","author":"Zhao","year":"2020","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2022.117693_b77","series-title":"IJCAI","first-page":"4419","article-title":"Addgraph: Anomaly detection in dynamic graph using attention-based temporal gcn","author":"Zheng","year":"2019"},{"key":"10.1016\/j.eswa.2022.117693_b78","series-title":"GLOBECOM 2020-2020 IEEE global communications conference","first-page":"1","article-title":"Continual information cascade learning","author":"Zhou","year":"2020"},{"key":"10.1016\/j.eswa.2022.117693_b79","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3433000","article-title":"A survey of information cascade analysis: Models, predictions, and recent advances","volume":"54","author":"Zhou","year":"2021","journal-title":"ACM Computing Surveys"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742200985X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742200985X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T05:04:52Z","timestamp":1714539892000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741742200985X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":79,"alternative-id":["S095741742200985X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117693","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CasSeqGCN: Combining network structure and temporal sequence to predict information cascades","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.117693","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"117693"}}