{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,31]],"date-time":"2025-03-31T01:12:21Z","timestamp":1743383541739},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.eswa.2022.116634","type":"journal-article","created":{"date-parts":[[2022,2,19]],"date-time":"2022-02-19T02:06:00Z","timestamp":1645236360000},"page":"116634","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":70,"special_numbering":"C","title":["Evolutionary inspired approach for mental stress detection using EEG signal"],"prefix":"10.1016","volume":"197","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5389-3928","authenticated-orcid":false,"given":"Lakhan Dev","family":"Sharma","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2963-2154","authenticated-orcid":false,"given":"Vijay Kumar","family":"Bohat","sequence":"additional","affiliation":[]},{"given":"Maria","family":"Habib","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0414-3570","authenticated-orcid":false,"given":"Ala\u2019 M.","family":"Al-Zoubi","sequence":"additional","affiliation":[]},{"given":"Hossam","family":"Faris","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9265-9819","authenticated-orcid":false,"given":"Ibrahim","family":"Aljarah","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.116634_b1","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.knosys.2015.08.004","article-title":"Application of entropies for automated diagnosis of epilepsy using EEG signals: A review","volume":"88","author":"Acharya","year":"2015","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2022.116634_b2","series-title":"International conference for innovation in biomedical engineering and life sciences","first-page":"15","article-title":"Mental stress quantification using EEG signals","author":"Al-Shargie","year":"2015"},{"issue":"4","key":"10.1016\/j.eswa.2022.116634_b3","doi-asserted-by":"crossref","first-page":"3335","DOI":"10.1007\/s00500-020-05439-w","article-title":"Evolutionary competitive swarm exploring optimal support vector machines and feature weighting","volume":"25","author":"Ala\u2019M","year":"2021","journal-title":"Soft Computing"},{"key":"10.1016\/j.eswa.2022.116634_b4","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.jbi.2015.11.007","article-title":"Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review","volume":"59","author":"Alberdi","year":"2016","journal-title":"Journal of Biomedical Informatics"},{"issue":"3","key":"10.1016\/j.eswa.2022.116634_b5","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1007\/s12559-017-9542-9","article-title":"Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm","volume":"10","author":"Aljarah","year":"2018","journal-title":"Cognitive Computation"},{"key":"10.1016\/j.eswa.2022.116634_b6","series-title":"Real-time ECG for objective stress level measurement","author":"Andersson","year":"2017"},{"key":"10.1016\/j.eswa.2022.116634_b7","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.knosys.2017.12.017","article-title":"An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks","volume":"143","author":"Bohat","year":"2018","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2022.116634_b8","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.eswa.2018.08.045","article-title":"A new heuristic for multilevel thresholding of images","volume":"117","author":"Bohat","year":"2019","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2022.116634_b9","series-title":"Proceedings of the fifth annual workshop on computational learning theory","first-page":"144","article-title":"A training algorithm for optimal margin classifiers","author":"Boser","year":"1992"},{"key":"10.1016\/j.eswa.2022.116634_b10","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1016\/j.bspc.2018.12.028","article-title":"Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach","volume":"49","author":"Cheema","year":"2019","journal-title":"Biomedical Signal Processing and Control"},{"issue":"2","key":"10.1016\/j.eswa.2022.116634_b11","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1300\/J490v21n02_07","article-title":"Workplace stress: Etiology and consequences","volume":"21","author":"Colligan","year":"2006","journal-title":"Journal of Workplace Behavioral Health"},{"key":"10.1016\/j.eswa.2022.116634_b12","series-title":"Proactive data mining with decision trees","author":"Dahan","year":"2014"},{"issue":"5","key":"10.1016\/j.eswa.2022.116634_b13","first-page":"319","article-title":"The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain","volume":"30","author":"Dedovic","year":"2005","journal-title":"Journal of Psychiatry and Neuroscience"},{"key":"10.1016\/j.eswa.2022.116634_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.smhl.2019.100085","article-title":"Gsr-based distracted driving identification using discrete & continuous decomposition and wavelet packet transform","volume":"14","author":"Dehzangi","year":"2019","journal-title":"Smart Health"},{"issue":"12","key":"10.1016\/j.eswa.2022.116634_b15","doi-asserted-by":"crossref","first-page":"1383","DOI":"10.1167\/15.12.1383","article-title":"Facial expression recognition impairment following acute social stress","volume":"15","author":"Desch\u00eanes","year":"2015","journal-title":"Journal of Vision"},{"issue":"4","key":"10.1016\/j.eswa.2022.116634_b16","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1002\/da.22227","article-title":"Neurobiology of stress, depression, and rapid acting antidepressants: remodeling synaptic connections","volume":"31","author":"Duman","year":"2014","journal-title":"Depression and Anxiety"},{"key":"10.1016\/j.eswa.2022.116634_b17","doi-asserted-by":"crossref","first-page":"34362","DOI":"10.1109\/ACCESS.2020.2974933","article-title":"Machine learning ranks ECG as an optimal wearable biosignal for assessing driving stress","volume":"8","author":"Elgendi","year":"2020","journal-title":"IEEE Access"},{"issue":"suppl_1","key":"10.1016\/j.eswa.2022.116634_b18","doi-asserted-by":"crossref","first-page":"ATP83","DOI":"10.1161\/str.48.suppl_1.tp83","article-title":"Abstract TP83: Stress exacerbates global ischemia-induced inflammatory response: Intervention by progesterone","volume":"48","author":"Espinosa-Garcia","year":"2017","journal-title":"Stroke"},{"issue":"8","key":"10.1016\/j.eswa.2022.116634_b19","doi-asserted-by":"crossref","first-page":"2355","DOI":"10.1007\/s00521-016-2818-2","article-title":"A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture","volume":"30","author":"Faris","year":"2018","journal-title":"Neural Computing and Applications"},{"issue":"5","key":"10.1016\/j.eswa.2022.116634_b20","doi-asserted-by":"crossref","first-page":"196","DOI":"10.3390\/e19050196","article-title":"Symbolic analysis of brain dynamics detects negative stress","volume":"19","author":"Garc\u00eda-Mart\u00ednez","year":"2017","journal-title":"Entropy"},{"issue":"6","key":"10.1016\/j.eswa.2022.116634_b21","doi-asserted-by":"crossref","first-page":"221","DOI":"10.3390\/e18060221","article-title":"Application of entropy-based metrics to identify emotional distress from electroencephalographic recordings","volume":"18","author":"Garc\u00eda-Mart\u00ednez","year":"2016","journal-title":"Entropy"},{"issue":"10","key":"10.1016\/j.eswa.2022.116634_b22","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065719500254","article-title":"Tangent space features-based transfer learning classification model for two-class motor imagery brain\u2013computer interface","volume":"29","author":"Gaur","year":"2019","journal-title":"International Journal of Neural Systems"},{"key":"10.1016\/j.eswa.2022.116634_b23","series-title":"2015 international joint conference on neural networks","first-page":"1","article-title":"An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface","author":"Gaur","year":"2015"},{"key":"10.1016\/j.eswa.2022.116634_b24","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.eswa.2017.11.007","article-title":"A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry","volume":"95","author":"Gaur","year":"2018","journal-title":"Expert Systems with Applications"},{"issue":"16","key":"10.1016\/j.eswa.2022.116634_b25","doi-asserted-by":"crossref","first-page":"6938","DOI":"10.1109\/JSEN.2019.2912790","article-title":"An automatic subject specific intrinsic mode function selection for enhancing two-class EEG-based motor imagery-brain computer interface","volume":"19","author":"Gaur","year":"2019","journal-title":"IEEE Sensors Journal"},{"issue":"13","key":"10.1016\/j.eswa.2022.116634_b26","first-page":"e215","article-title":"PhysioNet: Components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"issue":"1","key":"10.1016\/j.eswa.2022.116634_b27","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1097\/OPX.0b013e318236dd88","article-title":"Asthenopia and blink rate under visual and cognitive loads","volume":"89","author":"Gowrisankaran","year":"2012","journal-title":"Optometry and Vision Science"},{"key":"10.1016\/j.eswa.2022.116634_b28","series-title":"Data mining: concepts and techniques","author":"Han","year":"2011"},{"issue":"12","key":"10.1016\/j.eswa.2022.116634_b29","doi-asserted-by":"crossref","first-page":"376","DOI":"10.3390\/brainsci9120376","article-title":"A hybrid feature pool-based emotional stress state detection algorithm using EEG signals","volume":"9","author":"Hasan","year":"2019","journal-title":"Brain Sciences"},{"key":"10.1016\/j.eswa.2022.116634_b30","series-title":"2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence)","first-page":"1322","article-title":"ADASYN: Adaptive synthetic sampling approach for imbalanced learning","author":"He","year":"2008"},{"key":"10.1016\/j.eswa.2022.116634_b31","doi-asserted-by":"crossref","first-page":"42710","DOI":"10.1109\/ACCESS.2019.2907076","article-title":"Real-time detection of acute cognitive stress using a convolutional neural network from electrocardiographic signal","volume":"7","author":"He","year":"2019","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.eswa.2022.116634_b32","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1109\/TITS.2005.848368","article-title":"Detecting stress during real-world driving tasks using physiological sensors","volume":"6","author":"Healey","year":"2005","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2022.116634_b33","series-title":"2015 IEEE International conference on systems, man, and cybernetics","first-page":"3110","article-title":"EEG based stress monitoring","author":"Hou","year":"2015"},{"issue":"1","key":"10.1016\/j.eswa.2022.116634_b34","first-page":"41","article-title":"Applications of support vector machine (SVM) learning in cancer genomics","volume":"15","author":"Huang","year":"2018","journal-title":"Cancer Genomics-Proteomics"},{"key":"10.1016\/j.eswa.2022.116634_b35","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/j.autcon.2018.05.027","article-title":"EEG-based workers\u2019 stress recognition at construction sites","volume":"93","author":"Jebelli","year":"2018","journal-title":"Automation in Construction"},{"issue":"1","key":"10.1016\/j.eswa.2022.116634_b36","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.3233\/BME-130919","article-title":"Emotion recognition based on the sample entropy of EEG","volume":"24","author":"Jie","year":"2014","journal-title":"Bio-Medical Materials and Engineering"},{"issue":"3","key":"10.1016\/j.eswa.2022.116634_b37","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.cmpb.2005.06.012","article-title":"Entropies for detection of epilepsy in EEG","volume":"80","author":"Kannathal","year":"2005","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2022.116634_b38","series-title":"Proceedings of the 26th IEEE international symposium on computer-based medical systems","first-page":"209","article-title":"Stress detection from speech and galvanic skin response signals","author":"Kurniawan","year":"2013"},{"issue":"7\u20138","key":"10.1016\/j.eswa.2022.116634_b39","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1177\/0278364904045481","article-title":"On the relationship between classical grid search and probabilistic roadmaps","volume":"23","author":"LaValle","year":"2004","journal-title":"International Journal of Robotics Research"},{"issue":"6","key":"10.1016\/j.eswa.2022.116634_b40","doi-asserted-by":"crossref","first-page":"1440","DOI":"10.1109\/TIM.2013.2287803","article-title":"Entropy index in quantitative EEG measurement for diagnosis accuracy","volume":"63","author":"Lay-Ekuakille","year":"2013","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"10.1016\/j.eswa.2022.116634_b41","doi-asserted-by":"crossref","first-page":"3249","DOI":"10.1109\/ACCESS.2017.2787673","article-title":"The influence of acute stress on brain dynamics during task switching activities","volume":"6","author":"Lin","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.116634_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2019.107003","article-title":"Dynamic entropy-based pattern learning to identify emotions from eeg signals across individuals","volume":"150","author":"Lu","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.eswa.2022.116634_b43","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","article-title":"The whale optimization algorithm","volume":"95","author":"Mirjalili","year":"2016","journal-title":"Advances in Engineering Software"},{"key":"10.1016\/j.eswa.2022.116634_b44","series-title":"2015 international conference on advances in biomedical engineering","first-page":"61","article-title":"Driver stress level detection using HRV analysis","author":"Munla","year":"2015"},{"key":"10.1016\/j.eswa.2022.116634_b45","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/618743","article-title":"Analyzing EEG of quasi-brain-death based on dynamic sample entropy measures","volume":"2013","author":"Ni","year":"2013","journal-title":"Computational and Mathematical Methods in Medicine"},{"issue":"19","key":"10.1016\/j.eswa.2022.116634_b46","doi-asserted-by":"crossref","first-page":"9080","DOI":"10.3390\/app11199080","article-title":"An evolutionary-based sentiment analysis approach for enhancing government decisions during COVID-19 pandemic: The case of Jordan","volume":"11","author":"Obiedat","year":"2021","journal-title":"Applied Sciences"},{"key":"10.1016\/j.eswa.2022.116634_b47","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.cam.2018.07.008","article-title":"A hybrid ARIMA\u2013SVM model for the study of the remaining useful life of aircraft engines","volume":"346","author":"Ord\u00f3\u00f1ez","year":"2019","journal-title":"Journal of Computational and Applied Mathematics"},{"key":"10.1016\/j.eswa.2022.116634_b48","series-title":"2016 38th Annual international conference of the IEEE engineering in medicine and biology society","first-page":"3378","article-title":"Changes in ST, QT and RR ECG intervals during acute stress in firefighters: A pilot study","author":"Paiva","year":"2016"},{"issue":"2","key":"10.1016\/j.eswa.2022.116634_b49","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1007\/s10489-016-0843-6","article-title":"Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems","volume":"46","author":"Phan","year":"2017","journal-title":"Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies"},{"issue":"1","key":"10.1016\/j.eswa.2022.116634_b50","doi-asserted-by":"crossref","first-page":"18","DOI":"10.4103\/2230-8210.77573","article-title":"Stress and hormones","volume":"15","author":"Ranabir","year":"2011","journal-title":"Indian Journal of Endocrinology and Metabolism"},{"key":"10.1016\/j.eswa.2022.116634_b51","series-title":"Proceedings of the 16th international conference on mechatronics-mechatronika 2014","first-page":"639","article-title":"Study of heart rate as the main stress indicator in aircraft pilots","author":"Regula","year":"2014"},{"key":"10.1016\/j.eswa.2022.116634_b52","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/8463256","article-title":"Sample entropy on multidistance signal level difference for epileptic EEG classification","volume":"2018","author":"Rizal","year":"2018","journal-title":"The Scientific World Journal"},{"key":"10.1016\/j.eswa.2022.116634_b53","series-title":"The stress of life","author":"Selye","year":"1956"},{"key":"10.1016\/j.eswa.2022.116634_b54","doi-asserted-by":"crossref","DOI":"10.1109\/JSEN.2021.3120787","article-title":"A computerized approach for automatic human emotion recognition using sliding mode singular spectrum analysis","author":"Sharma","year":"2021","journal-title":"IEEE Sensors Journal"},{"key":"10.1016\/j.eswa.2022.116634_b55","first-page":"1","article-title":"Mental arithmetic task load recognition using EEG signal and Bayesian optimized K-nearest neighbor","author":"Sharma","year":"2021","journal-title":"International Journal of Information Technology"},{"issue":"3","key":"10.1016\/j.eswa.2022.116634_b56","doi-asserted-by":"crossref","first-page":"1287","DOI":"10.1016\/j.cmpb.2012.07.003","article-title":"Objective measures, sensors and computational techniques for stress recognition and classification: A survey","volume":"108","author":"Sharma","year":"2012","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2022.116634_b57","first-page":"1","article-title":"Cognitive performance detection using entropy-based features and lead-specific approach","author":"Sharma","year":"2021","journal-title":"Signal Image and Video Processing"},{"issue":"2","key":"10.1016\/j.eswa.2022.116634_b58","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1007\/s11760-017-1146-z","article-title":"Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach","volume":"12","author":"Sharma","year":"2018","journal-title":"Signal Image and Video Processing"},{"key":"10.1016\/j.eswa.2022.116634_b59","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.measurement.2018.04.054","article-title":"Stationary wavelet transform based technique for automated external defibrillator using optimally selected classifiers","volume":"125","author":"Sharma","year":"2018","journal-title":"Measurement"},{"key":"10.1016\/j.eswa.2022.116634_b60","article-title":"Myocardial infarction detection and localization using optimal features based lead specific approach","author":"Sharma","year":"2019","journal-title":"IRBM"},{"key":"10.1016\/j.eswa.2022.116634_b61","doi-asserted-by":"crossref","first-page":"13545","DOI":"10.1109\/ACCESS.2017.2723622","article-title":"Machine learning framework for the detection of mental stress at multiple levels","volume":"5","author":"Subhani","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2022.116634_b62","series-title":"Real time stress detection system based on EEG signals","author":"Vanitha","year":"2016"},{"issue":"5","key":"10.1016\/j.eswa.2022.116634_b63","doi-asserted-by":"crossref","first-page":"6075","DOI":"10.3390\/s120506075","article-title":"A stress sensor based on galvanic skin response (GSR) controlled by ZigBee","volume":"12","author":"Villarejo","year":"2012","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2022.116634_b64","doi-asserted-by":"crossref","first-page":"27533","DOI":"10.1038\/srep27533","article-title":"Long-term mindfulness training is associated with reliable differences in resting respiration rate","volume":"6","author":"Wielgosz","year":"2016","journal-title":"Scientific Reports"},{"issue":"2","key":"10.1016\/j.eswa.2022.116634_b65","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1007\/s11062-016-9572-z","article-title":"Stress state evaluation by an improved support vector machine","volume":"48","author":"Xin","year":"2016","journal-title":"Neurophysiology"},{"key":"10.1016\/j.eswa.2022.116634_b66","first-page":"1057","article-title":"The impact of stress on body function: A review","volume":"16","author":"Yaribeygi","year":"2017","journal-title":"EXCLI Journal"},{"issue":"1","key":"10.1016\/j.eswa.2022.116634_b67","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3390\/data4010014","article-title":"Electroencephalograms during mental arithmetic task performance","volume":"4","author":"Zyma","year":"2019","journal-title":"Data"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422001233?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422001233?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,12]],"date-time":"2023-03-12T09:11:24Z","timestamp":1678612284000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422001233"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":67,"alternative-id":["S0957417422001233"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.116634","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Evolutionary inspired approach for mental stress detection using EEG signal","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.116634","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116634"}}