{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T05:10:46Z","timestamp":1725426646939},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T00:00:00Z","timestamp":1642032000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.eswa.2022.116519","type":"journal-article","created":{"date-parts":[[2022,1,15]],"date-time":"2022-01-15T07:45:42Z","timestamp":1642232742000},"page":"116519","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Structure-aware deep learning for chronic middle ear disease"],"prefix":"10.1016","volume":"194","author":[{"given":"Zheng","family":"Wang","sequence":"first","affiliation":[]},{"given":"Jian","family":"Song","sequence":"additional","affiliation":[]},{"given":"Ri","family":"Su","sequence":"additional","affiliation":[]},{"given":"Muzhou","family":"Hou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9509-0157","authenticated-orcid":false,"given":"Min","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Jianglin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xuewen","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2022.116519_b0005","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1080\/09638280701228073","article-title":"Self-reported hearing difficulties, communication strategies and psychological general well-being (quality of life) in patients with acquired hearing impairment","volume":"30","author":"Hallberg","year":"2008","journal-title":"Disability and rehabilitation."},{"key":"10.1016\/j.eswa.2022.116519_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00405-020-06487-6","article-title":"Characteristics of health-related quality of life in different types of chronic middle ear disease","volume":"278","author":"B\u00e4chinger","year":"2021","journal-title":"European Archives of Oto-Rhino-Laryngology."},{"key":"10.1016\/j.eswa.2022.116519_b0015","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/S0030-6665(02)00052-X","article-title":"The management of pediatric cholesteatoma","volume":"35","author":"Shohet","year":"2002","journal-title":"Otolaryngologic clinics of North America."},{"key":"10.1016\/j.eswa.2022.116519_b0020","unstructured":"Acuin, & Jose. (2004). Chronic suppurative otitis media: burden of illness and management options. Geneve World Health Organization."},{"key":"10.1016\/j.eswa.2022.116519_b0025","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.anorl.2010.07.001","article-title":"Childhood cholesteatoma","volume":"127","author":"Nevoux","year":"2010","journal-title":"European annals of otorhinolaryngology, head and neck diseases."},{"key":"10.1016\/j.eswa.2022.116519_b0030","doi-asserted-by":"crossref","DOI":"10.5152\/iao.2017.3411","article-title":"Cholesteatoma Definition and Classification: A Literature Review","volume":"13","author":"Rutkowska","year":"2017","journal-title":"The Journal of International Advanced Otology."},{"key":"10.1016\/j.eswa.2022.116519_b0035","doi-asserted-by":"crossref","DOI":"10.1007\/s12105-018-0915-5","article-title":"Cholesteatoma Pearls: Practical Points and Update","volume":"12","author":"Castle","year":"2018","journal-title":"Head and Neck Pathology."},{"key":"10.1016\/j.eswa.2022.116519_b0040","unstructured":"Lustig L R & Limb C J & Baden R. (2018)..Chronic otitis media, cholesteatoma, and mastoiditis in adults. UpToDate Waltham, MA (citirano 145 2019)."},{"issue":"5","key":"10.1016\/j.eswa.2022.116519_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.5604\/01.3001.0012.5423","article-title":"Diagnostic imaging in chronic otitis media: Does ct and mri fusion aid therapeutic decision making? - a pilot study","volume":"72","author":"Kusak","year":"2018","journal-title":"Otolaryngologia polska. The Polish otolaryngology"},{"key":"10.1016\/j.eswa.2022.116519_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00405-019-05500-x","article-title":"Correlation between pre-operative CT findings and intra-operative features in pediatric cholesteatoma: A retrospective study on 26 patients","volume":"276","author":"Molteni","year":"2019","journal-title":"European Archives of Oto-Rhino-Laryngology."},{"key":"10.1016\/j.eswa.2022.116519_b0055","doi-asserted-by":"crossref","first-page":"442","DOI":"10.5144\/0256-4947.2004.442","article-title":"Middle Ear Cholesteatoma: Characteristic CT Findings in 64 Patients","volume":"24","author":"Gaurano","year":"2004","journal-title":"Annals of Saudi medicine."},{"key":"10.1016\/j.eswa.2022.116519_b0060","doi-asserted-by":"crossref","DOI":"10.3892\/etm.2020.8797","article-title":"Interpretable artificial intelligence framework for COVID\u201319 screening on chest X\u2013rays","volume":"20","author":"Tsiknakis","year":"2020","journal-title":"Experimental and therapeutic medicine."},{"key":"10.1016\/j.eswa.2022.116519_b0065","doi-asserted-by":"crossref","unstructured":"Apostolopoulos, Ioannis & Bessiana, Tzani. (2020). Covid-19: Automatic detection from X-Ray images utilizing Transfer Learning with Convolutional Neural Networks.","DOI":"10.1007\/s13246-020-00865-4"},{"key":"10.1016\/j.eswa.2022.116519_b0070","article-title":"Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays","volume":"110","author":"Wang","year":"2020","journal-title":"Pattern Recognition."},{"key":"10.1016\/j.eswa.2022.116519_b0075","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41591-020-0931-3","article-title":"Artificial intelligence\u2013enabled rapid diagnosis of patients with COVID-19","volume":"26","author":"Mei","year":"2020","journal-title":"Nature Medicine."},{"key":"10.1016\/j.eswa.2022.116519_b0080","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-020-66333-x","article-title":"Weakly-supervised learning for lung carcinoma classification using deep learning","volume":"10","author":"Kanavati","year":"2020","journal-title":"Scientific Reports."},{"key":"10.1016\/j.eswa.2022.116519_b0085","doi-asserted-by":"crossref","unstructured":"Tang, Yu-Xing & Tang, You-Bao & Peng, Yifan & Yan, Ke & Bagheri, Mohammadhadi & Redd, Bernadette & Brandon, Catherine & lu, Zhiyong & Han, Mei & Xiao, Jing & Summers, Ronald. (2020). Automated abnormality classification of chest radiographs using deep convolutional neural networks. npj Digital Medicine. 3. 10.1038\/s41746-020-0273-z.","DOI":"10.1038\/s41746-020-0273-z"},{"key":"10.1016\/j.eswa.2022.116519_b0090","doi-asserted-by":"crossref","unstructured":"Younis, Haseeb & Bhatti, Muhammad & Azeem, Muhammad. (2019). Classification of Skin Cancer Dermoscopy Images using Transfer Learning. 1-4. 10.1109\/ICET48972.2019.8994508.","DOI":"10.1109\/ICET48972.2019.8994508"},{"key":"10.1016\/j.eswa.2022.116519_b0095","article-title":"An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans","volume":"48","author":"Wang","year":"2019","journal-title":"Annals of Biomedical Engineering."},{"key":"10.1016\/j.eswa.2022.116519_b0100","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-020-62634-3","article-title":"Convolutional neural network for classification of two-dimensional array images generated from clinical information may support diagnosis of rheumatoid arthritis","volume":"10","author":"Fukae","year":"2020","journal-title":"Scientific Reports."},{"key":"10.1016\/j.eswa.2022.116519_b0105","doi-asserted-by":"crossref","DOI":"10.1007\/s10278-021-00432-7","article-title":"R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks","volume":"34","author":"Wang","year":"2021","journal-title":"Journal of Digital Imaging."},{"key":"10.1016\/j.eswa.2022.116519_b0110","article-title":"Surgical mapping of middle ear cholesteatoma with fusion of computed tomography and diffusion-weighted magnetic resonance images: Diagnostic performance and interobserver agreement","author":"Dutt","year":"2019","journal-title":"International journal of pediatric otorhinolaryngology"},{"key":"10.1016\/j.eswa.2022.116519_b0115","first-page":"1","article-title":"Deep Learning in Automated Region Proposal and Diagnosis of Chronic Otitis Media Based on Computed Tomography","volume":"41","author":"Wang","year":"2019","journal-title":"Ear and Hearing."},{"key":"10.1016\/j.eswa.2022.116519_b0120","doi-asserted-by":"crossref","DOI":"10.1017\/S0022215120000717","article-title":"Artificial intelligence to detect tympanic membrane perforations","volume":"134","author":"Habib","year":"2020","journal-title":"The Journal of Laryngology & Otology."},{"key":"10.1016\/j.eswa.2022.116519_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.ebiom.2019.06.050","article-title":"Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database","volume":"45","author":"Cha","year":"2019","journal-title":"EBioMedicine."},{"key":"10.1016\/j.eswa.2022.116519_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.neunet.2020.03.023","article-title":"Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks","volume":"126","author":"Khan","year":"2020","journal-title":"Neural Networks."},{"key":"10.1016\/j.eswa.2022.116519_b0135","article-title":"Automated measurement of hydrops ratio from MRI in patients with M\u00e9ni\u00e8re\u2019s disease using CNN-based segmentation","volume":"10","author":"Cho","year":"2020","journal-title":"Scientific Reports."},{"key":"10.1016\/j.eswa.2022.116519_b0140","doi-asserted-by":"crossref","unstructured":"Visca\u00edno, Michelle & Maass, Juan & Delano, Paul & Torrente, Mariela & Stott, Carlos & auat cheein, Fernando. (2020). Computer-aided diagnosis of external and middle ear conditions: A machine learning approach. PLOS ONE. 15. e0229226. 10.1371\/journal.pone.0229226.","DOI":"10.1371\/journal.pone.0229226"},{"issue":"2","key":"10.1016\/j.eswa.2022.116519_b0145","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.otc.2017.11.001","article-title":"Otosclerosis: Temporal Bone Pathology","volume":"51","author":"Quesnel","year":"2018","journal-title":"Otolaryngol Clin North Am."},{"key":"10.1016\/j.eswa.2022.116519_b0150","doi-asserted-by":"crossref","first-page":"800","DOI":"10.3390\/cancers11060800","article-title":"Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study","volume":"11","author":"Fujima","year":"2019","journal-title":"Cancers."},{"issue":"12","key":"10.1016\/j.eswa.2022.116519_b0155","doi-asserted-by":"crossref","first-page":"969","DOI":"10.21037\/atm-21-1171","article-title":"The use of explainable artificial intelligence to explore types of fenestral otosclerosis misdiagnosed when using temporal bone high-resolution computed tomography","volume":"9","author":"Tan","year":"2021","journal-title":"Ann Transl Med."},{"issue":"1","key":"10.1016\/j.eswa.2022.116519_b0160","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1080\/21691401.2021.1879823","article-title":"Classification of white blood cells using weighted optimized deformable convolutional neural networks","volume":"49","author":"Yao","year":"2021","journal-title":"Artificial Cells, Nanomedicine, and Biotechnology"},{"key":"10.1016\/j.eswa.2022.116519_b0165","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1109\/TIP.2020.3038363","article-title":"PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans","volume":"30","author":"Nikan","year":"2021","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.eswa.2022.116519_b0170","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.neunet.2020.01.005","article-title":"A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images","volume":"124","author":"Li","year":"2020","journal-title":"Neural Netw."},{"issue":"1","key":"10.1016\/j.eswa.2022.116519_b0175","doi-asserted-by":"crossref","first-page":"2885","DOI":"10.1038\/s41598-021-82289-y","article-title":"Deep learning for the fully automated segmentation of the inner ear on MRI","volume":"11","author":"Vaidyanathan","year":"2021","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2022.116519_b0180","unstructured":"He, Kaiming & Gkioxari, Georgia & Dollar, Piotr & Girshick, Ross. (2018). Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 1-1. 10.1109\/TPAMI.2018.2844175."},{"key":"10.1016\/j.eswa.2022.116519_b0185","unstructured":"Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 1409.1556."},{"key":"10.1016\/j.eswa.2022.116519_b0190","doi-asserted-by":"crossref","unstructured":"Fu, Jun & Liu, Jing & Tian, Haijie & Li, Yong & Bao, Yongjun & Fang, Zhiwei & Lu, Hanqing. (2019). Dual Attention Network for Scene Segmentation. 3141-3149. 10.1109\/CVPR.2019.00326.","DOI":"10.1109\/CVPR.2019.00326"},{"key":"10.1016\/j.eswa.2022.116519_b0195","unstructured":"Priyadarshini, Ishaani & Jha, Sudan & Kumar, Raghavendra & Smarandache, Florentin & son, le. (2018). Neutrosophic Image Segmentation with Dice Coefficients. Measurement."},{"key":"10.1016\/j.eswa.2022.116519_b0200","unstructured":"Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations."},{"key":"10.1016\/j.eswa.2022.116519_b0205","article-title":"Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data","volume":"9","author":"Wang","year":"2016","journal-title":"Interdisciplinary Sciences, Computational Life Sciences"},{"key":"10.1016\/j.eswa.2022.116519_b0210","unstructured":"Grave, Edouard & Joulin, Armand & Ciss\u00e9, Moustapha & Grangier, David & J\u00e9gou, Herv\u00e9. (2016). Efficient softmax approximation for GPUs."},{"key":"10.1016\/j.eswa.2022.116519_b0215","doi-asserted-by":"crossref","unstructured":"Szegedy, Christian & Vanhoucke, Vincent & Ioffe, Sergey & Shlens, Jon & Wojna, ZB. (2016). Rethinking the Inception Architecture for Computer Vision. 10.1109\/CVPR.2016.308.","DOI":"10.1109\/CVPR.2016.308"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422000203?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417422000203?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,2,16]],"date-time":"2022-02-16T07:26:54Z","timestamp":1644996414000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417422000203"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":43,"alternative-id":["S0957417422000203"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2022.116519","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Structure-aware deep learning for chronic middle ear disease","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2022.116519","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"116519"}}