{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:49:23Z","timestamp":1740116963196,"version":"3.37.3"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002352","name":"Ain Shams University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002352","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007637","name":"German University in Cairo","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007637","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.eswa.2021.116489","type":"journal-article","created":{"date-parts":[[2022,1,10]],"date-time":"2022-01-10T12:59:46Z","timestamp":1641819586000},"page":"116489","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Features processing for random forest optimization in lung nodule localization"],"prefix":"10.1016","volume":"193","author":[{"given":"Nada S.","family":"El-Askary","sequence":"first","affiliation":[]},{"given":"Mohammed A.-M.","family":"Salem","sequence":"additional","affiliation":[]},{"given":"Mohamed I.","family":"Roushdy","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.eswa.2021.116489_b0005","first-page":"111","article-title":"Nodular-deep: Classification of pulmonary nodules using deep NN","volume":"6","author":"Abbas","year":"2017","journal-title":"International Journal of Medical Research & Health Sciences"},{"key":"10.1016\/j.eswa.2021.116489_b0010","doi-asserted-by":"crossref","unstructured":"American Cancer Society. (2019). Cancer facts and figures 2019. Genes and Development. https:\/\/doi.org\/10.1007\/978-1-4614-8063-1.","DOI":"10.1007\/978-1-4614-8063-1"},{"key":"10.1016\/j.eswa.2021.116489_b0015","first-page":"6040","article-title":"Classification of interstitial lung disease patterns using local DCT features and RF","author":"Anthimopoulos","year":"2014","journal-title":"IEEE"},{"key":"10.1016\/j.eswa.2021.116489_b0020","doi-asserted-by":"crossref","unstructured":"Apostolopoulos, I. D., Papathanasiou, N. D., & Panayiotakis, G. S. (2021). Classification of lung nodule malignancy in computed tomography imaging utilising generative adversarial networks and semi-supervised transfer learning. Biocybernetics and Biomedical Engineering, (September). https:\/\/doi.org\/10.1016\/j.bbe.2021.08.006.","DOI":"10.1016\/j.bbe.2021.08.006"},{"issue":"2","key":"10.1016\/j.eswa.2021.116489_b0025","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1118\/1.3528204","article-title":"The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans","volume":"38","author":"Armato","year":"2011","journal-title":"Medical Physics"},{"issue":"8","key":"10.1016\/j.eswa.2021.116489_b0030","first-page":"3228","article-title":"A model: Lung nodule detection and classification by SVM network","volume":"7","author":"Bhaskar","year":"2020","journal-title":"European Journal of Molecular & Clinical Medicine"},{"issue":"2","key":"10.1016\/j.eswa.2021.116489_b0035","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2021.116489_b0040","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2021.116489_b0045","unstructured":"Bronmans, B., & Haasdijk, E. (2018). Lung nodule segmentation using 3D convolutional neural networks. In Bronmans2018LungNS (pp. 1\u20135)."},{"issue":"1","key":"10.1016\/j.eswa.2021.116489_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-84630-x","article-title":"Deep learning classification of lung cancer histology using CT images","volume":"11","author":"Chaunzwa","year":"2021","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2021.116489_b0055","doi-asserted-by":"crossref","first-page":"1213","DOI":"10.3233\/BME-151418","article-title":"Computer-aided detection of lung nodules using outer surface features","volume":"26","author":"Demir","year":"2015","journal-title":"Bio-Medical Materials and Engineering"},{"key":"10.1016\/j.eswa.2021.116489_b0060","first-page":"17","article-title":"A framework for diagnosing interstitial lung diseases in HRCT: The TALISMAN project","volume":"64","author":"Depeursinge","year":"2008","journal-title":"SMI"},{"issue":"3","key":"10.1016\/j.eswa.2021.116489_b0065","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.compmedimag.2011.07.003","article-title":"Computerized Medical Imaging and Graphics Building a reference multimedia database for interstitial lung diseases","volume":"36","author":"Depeursinge","year":"2012","journal-title":"Computerized Medical Imaging and Graphics"},{"key":"10.1016\/j.eswa.2021.116489_b0070","first-page":"538","article-title":"The Lung TIME: Annotated lung nodule dataset and nodule detection framework","volume":"7260","author":"Dolejsi","year":"2009","journal-title":"Proc SPIE"},{"key":"10.1016\/j.eswa.2021.116489_b0075","series-title":"Proceedings - 2019 IEEE 9th international conference on intelligent computing and information systems, ICICIS 2019","article-title":"Lung Nodule Detection and Classification using random forest: A review","author":"El-Askary","year":"2019"},{"key":"10.1016\/j.eswa.2021.116489_b0080","doi-asserted-by":"crossref","unstructured":"El-askary, N. S., Salem, M. A., & Roushdy, M. I. (2019). Feature extraction and analysis for lung nodule classification using random forest. In ICSIE 2019 (pp. 248\u2013252).","DOI":"10.1109\/ICICIS46948.2019.9014706"},{"key":"10.1016\/j.eswa.2021.116489_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113017","article-title":"Multi-view Convolutional Neural Network for lung nodule false positive reduction","volume":"162","author":"El-Regaily","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116489_b0090","series-title":"ICICIS 2017","first-page":"72","article-title":"Lung nodule segmentation and detection in CT","author":"El Regaily","year":"2017"},{"issue":"June","key":"10.1016\/j.eswa.2021.116489_b0095","article-title":"Machine learning techniques for the segmentation of tomographic image data of functional materials","volume":"6","author":"Furat","year":"2019","journal-title":"Frontiers in Materials"},{"key":"10.1016\/j.eswa.2021.116489_b0100","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","author":"Haralick","year":"1973","journal-title":"IEEE Transaction on Systems, Man and Cybernetics"},{"key":"10.1016\/j.eswa.2021.116489_b0105","series-title":"Proceedings of the 3rd international conference on document analysis and recognition, Montreal, QC","first-page":"278","article-title":"Random decision forests","author":"Ho","year":"1995"},{"key":"10.1016\/j.eswa.2021.116489_b0110","article-title":"An ensemble shape gradient features descriptor based nodule detection paradigm: A novel model to augment complex diagnostic decisions assistance","volume":"1\u201327","author":"Jaffar","year":"2018","journal-title":"Multimedia Tools and Applications"},{"issue":"3","key":"10.1016\/j.eswa.2021.116489_b0115","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s40009-017-0549-2","article-title":"Automatic detection of lung cancer nodules in CT images","volume":"40","author":"Jose","year":"2017","journal-title":"National Academy Science Letters"},{"issue":"3","key":"10.1016\/j.eswa.2021.116489_b0120","first-page":"254","article-title":"Lung cancer detection and analysis using data mining techniques, principal component analysis and artificial neural network","volume":"26","author":"Juma","year":"2016","journal-title":"American Scientific Research Journal for Engineering, Technology and Science"},{"issue":"3","key":"10.1016\/j.eswa.2021.116489_b0125","first-page":"187","article-title":"Feature extraction and principal component analysis for lung cancer detection in CT scan images","volume":"3","author":"Kaur","year":"2013","journal-title":"International Journal of Advanced Research in Computer Science and Software Engineering"},{"key":"10.1016\/j.eswa.2021.116489_b0130","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.cmpb.2018.04.001","article-title":"Quantitative CT analysis of pulmonary nodules for lung adenocarcinoma risk classification based on an exponential weighted grey scale angular density distribution feature","volume":"160","author":"Le","year":"2018","journal-title":"Computer Methods and Programs in Biomedicine"},{"issue":"7","key":"10.1016\/j.eswa.2021.116489_b0135","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1016\/j.compmedimag.2010.03.006","article-title":"Random forest based lung nodule classification aided by clustering","volume":"34","author":"Lee","year":"2010","journal-title":"Computerized Medical Imaging and Graphics"},{"issue":"April","key":"10.1016\/j.eswa.2021.116489_b0140","article-title":"A multi-task CNN approach for lung nodule malignancy classification and characterization","volume":"184","author":"Marques","year":"2021","journal-title":"Expert Systems with Applications"},{"issue":"12","key":"10.1016\/j.eswa.2021.116489_b0145","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1016\/j.acra.2007.07.021","article-title":"The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation","volume":"14","author":"Mcnitt-gray","year":"2008","journal-title":"Academic Radiology"},{"issue":"1","key":"10.1016\/j.eswa.2021.116489_b0150","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.media.2015.02.002","article-title":"Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset","volume":"22","author":"Messay","year":"2015","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.eswa.2021.116489_b0155","unstructured":"Michael, V. (1999). Haralick texture features. Retrieved January 24, 2019, from http:\/\/murphylab.web.cmu.edu\/publications\/boland\/boland_node26.html."},{"key":"10.1016\/j.eswa.2021.116489_b0160","doi-asserted-by":"crossref","first-page":"113415","DOI":"10.1109\/ACCESS.2021.3102707","article-title":"Pulmonary nodule classification using feature and ensemble learning-based fusion techniques","volume":"9","author":"Muzammil","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.eswa.2021.116489_b0165","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1007\/s12021-013-9204-3","article-title":"A review of feature reduction techniques in neuroimaging","volume":"12","author":"Mwangi","year":"2014","journal-title":"Neuroinform"},{"key":"10.1016\/j.eswa.2021.116489_b0170","doi-asserted-by":"crossref","unstructured":"Naik, A., & Edla, D. R. (2021). Lung nodule classification on computed tomography images using deep learning. Wireless personal communications (Vol. 116). Springer US. https:\/\/doi.org\/10.1007\/s11277-020-07732-1.","DOI":"10.1007\/s11277-021-08258-w"},{"key":"10.1016\/j.eswa.2021.116489_b0175","doi-asserted-by":"crossref","unstructured":"Nasrullah, N., Sang, J., S. Alam, M., Mateen, M., Cai, B., & Hu, H. (2019). Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors, 19(17), 3722. https:\/\/doi.org\/10.3390\/s19173722.","DOI":"10.3390\/s19173722"},{"key":"10.1016\/j.eswa.2021.116489_b0180","doi-asserted-by":"crossref","unstructured":"Oshiro, T. M., & Perez, P. S. (2012). How many trees in a random forest? In Machine learning and data mining in pattern recognition (pp. 154\u2013168). https:\/\/doi.org\/10.1007\/978-3-642-39712-7.","DOI":"10.1007\/978-3-642-31537-4_13"},{"key":"10.1016\/j.eswa.2021.116489_b0185","first-page":"363","article-title":"Concise clinical review: Decision making in patients with pulmonary nodules","volume":"185","author":"Ost","year":"2012","journal-title":"American Thoracic Society"},{"issue":"6","key":"10.1016\/j.eswa.2021.116489_b0190","doi-asserted-by":"crossref","first-page":"16","DOI":"10.5120\/ijca2016908782","article-title":"A survey on feature extraction techniques for shape based object recognition","volume":"137","author":"Patel","year":"2016","journal-title":"International Journal of Computer Applications"},{"key":"10.1016\/j.eswa.2021.116489_b0195","series-title":"Lecture notes in networks and systems (Vol. 202 LNNS)","doi-asserted-by":"crossref","DOI":"10.1007\/978-981-16-0695-3_7","article-title":"Lungs nodule prediction using convolutional neural network and K-nearest neighbor","author":"Patnaik","year":"2021"},{"issue":"November","key":"10.1016\/j.eswa.2021.116489_b0200","article-title":"A hybrid CAD system for lung nodule detection using CT studies based in soft computing","volume":"168","author":"Rey","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116489_b0205","doi-asserted-by":"crossref","first-page":"187","DOI":"10.3233\/FI-2000-411207","article-title":"The watershed transform: Definitions, algorithms and parallelization strategies","volume":"41","author":"Roerdink","year":"2003","journal-title":"Fundamenta Informaticae"},{"key":"10.1016\/j.eswa.2021.116489_b0210","doi-asserted-by":"crossref","DOI":"10.1155\/2017\/8314740","article-title":"Using deep learning for classification of lung nodules on CT images","volume":"2017","author":"Song","year":"2017","journal-title":"Journal of Healthcare Engineering"},{"key":"10.1016\/j.eswa.2021.116489_b0215","first-page":"1","article-title":"A survey of dimensionality reduction techniques","author":"Sorzano","year":"2014","journal-title":"ArXiv E-Prints"},{"key":"10.1016\/j.eswa.2021.116489_b0220","doi-asserted-by":"crossref","DOI":"10.1186\/s13550-017-0260-9","article-title":"Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18 F-FDG PET \/ CT images","author":"Wang","year":"2017","journal-title":"EJNMMI Research"},{"key":"10.1016\/j.eswa.2021.116489_b0225","doi-asserted-by":"crossref","DOI":"10.1155\/2016\/8052436","article-title":"Pulmonary nodule detection model based on SVM and CT image feature-level fusion with rough sets","volume":"2016","author":"Zhou","year":"2016","journal-title":"BioMed Research International"},{"key":"10.1016\/j.eswa.2021.116489_b0230","article-title":"Deep 3D dual path nets for automated pulmonary nodule detection and classification","author":"Zhu","year":"2018","journal-title":"IEEE WACV"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742101767X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741742101767X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,20]],"date-time":"2024-02-20T20:02:24Z","timestamp":1708459344000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741742101767X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":46,"alternative-id":["S095741742101767X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116489","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Features processing for random forest optimization in lung nodule localization","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116489","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116489"}}