{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T13:03:43Z","timestamp":1724504623384},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.eswa.2021.116428","type":"journal-article","created":{"date-parts":[[2022,1,13]],"date-time":"2022-01-13T05:57:43Z","timestamp":1642053463000},"page":"116428","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Hybrid filter\u2013wrapper attribute selection with alpha-level fuzzy rough sets"],"prefix":"10.1016","volume":"193","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0541-0108","authenticated-orcid":false,"given":"Nguyen Ngoc","family":"Thuy","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4689-3006","authenticated-orcid":false,"given":"Sartra","family":"Wongthanavasu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2021.116428_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113859","article-title":"A hybrid fuzzy feature selection algorithm for high-dimensional regression problems: An mRMR-based framework","volume":"162","author":"Aghaeipoor","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116428_b2","doi-asserted-by":"crossref","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"10.1016\/j.eswa.2021.116428_b3","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.fss.2019.07.014","article-title":"A graph approach for fuzzy-rough feature selection","volume":"391","author":"Chen","year":"2020","journal-title":"Fuzzy Sets and Systems"},{"issue":"5","key":"10.1016\/j.eswa.2021.116428_b4","doi-asserted-by":"crossref","first-page":"1325","DOI":"10.1109\/TFUZZ.2013.2291570","article-title":"Attribute reduction for heterogeneous data based on the combination of classical and fuzzy rough set models","volume":"22","author":"Chen","year":"2014","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b5","doi-asserted-by":"crossref","first-page":"6907","DOI":"10.1007\/s00500-016-2393-6","article-title":"Neighborhood rough set reduction with fish swarm algorithm","volume":"21","author":"Chen","year":"2017","journal-title":"Soft Computing"},{"issue":"2","key":"10.1016\/j.eswa.2021.116428_b6","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1109\/TFUZZ.2011.2173695","article-title":"A novel algorithm for finding reducts with fuzzy rough sets","volume":"20","author":"Chen","year":"2012","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"1, Part 4","key":"10.1016\/j.eswa.2021.116428_b7","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.ijar.2013.09.007","article-title":"Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection","volume":"55","author":"Cornelis","year":"2014","journal-title":"International Journal Of Approximate Reasoning"},{"issue":"4","key":"10.1016\/j.eswa.2021.116428_b8","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.1109\/TFUZZ.2017.2768044","article-title":"Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets","volume":"26","author":"Dai","year":"2018","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"1","key":"10.1016\/j.eswa.2021.116428_b9","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.asoc.2012.07.029","article-title":"Attribute selection based on information gain ratio in fuzzy rough set theory with application to tumor classification","volume":"13","author":"Dai","year":"2013","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2021.116428_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105945","article-title":"Multigranulation consensus fuzzy-rough based attribute reduction","volume":"198","author":"Ding","year":"2020","journal-title":"Knowledge-Based Systems"},{"issue":"2\u20133","key":"10.1016\/j.eswa.2021.116428_b11","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/03081079008935107","article-title":"Rough fuzzy sets and fuzzy rough sets","volume":"17","author":"Dubois","year":"1990","journal-title":"International Journal of General Systems"},{"key":"10.1016\/j.eswa.2021.116428_b12","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.knosys.2018.03.015","article-title":"Attribute reduction based on max-decision neighborhood rough set model","volume":"151","author":"Fan","year":"2018","journal-title":"Knowledge-Based Systems"},{"issue":"5","key":"10.1016\/j.eswa.2021.116428_b13","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1109\/TFUZZ.2019.2948586","article-title":"Novel incremental algorithms for attribute reduction from dynamic decision tables using hybrid filter-wrapper with fuzzy partition distance","volume":"28","author":"Giang","year":"2020","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b14","doi-asserted-by":"crossref","first-page":"2929","DOI":"10.1007\/s00521-020-04744-7","article-title":"New filter approaches for feature selection using differential evolution and fuzzy rough set theory","volume":"32","author":"Hancer","year":"2020","journal-title":"Neural Computing And Applications"},{"key":"10.1016\/j.eswa.2021.116428_b15","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.knosys.2007.07.001","article-title":"Mixed feature selection based on granulation and approximation","volume":"21","author":"Hu","year":"2008","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b16","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1109\/TSMCB.2009.2024166","article-title":"Selecting discrete and continuous features based on neighborhood decision error minimization","volume":"40","author":"Hu","year":"2010","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B Cybernetics"},{"issue":"12","key":"10.1016\/j.eswa.2021.116428_b17","doi-asserted-by":"crossref","first-page":"3509","DOI":"10.1016\/j.patcog.2007.03.017","article-title":"Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation","volume":"40","author":"Hu","year":"2007","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2021.116428_b18","doi-asserted-by":"crossref","first-page":"3577","DOI":"10.1016\/j.ins.2008.05.024","article-title":"Neighborhood rough set based heterogeneous feature subset selection","volume":"178","author":"Hu","year":"2008","journal-title":"Information Sciences"},{"issue":"1","key":"10.1016\/j.eswa.2021.116428_b19","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/TFUZZ.2017.2647966","article-title":"Large-scale multimodality attribute reduction with multi-kernel fuzzy rough sets","volume":"26","author":"Hu","year":"2018","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2019.103421","article-title":"A fitting model based intuitionistic fuzzy rough feature selection","volume":"89","author":"Jain","year":"2020","journal-title":"Engineering Applications Of Artificial Intelligence"},{"key":"10.1016\/j.eswa.2021.116428_b21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2015.06.025","article-title":"Towards scalable fuzzy\u2013rough feature selection","volume":"323","author":"Jensen","year":"2015","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2021.116428_b22","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1016\/S0165-0114(03)00021-6","article-title":"Fuzzy-rough attribute reduction with application to web categorization","volume":"141","author":"Jensen","year":"2004","journal-title":"Fuzzy Sets and Systems"},{"issue":"4","key":"10.1016\/j.eswa.2021.116428_b23","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1109\/TFUZZ.2008.924209","article-title":"New approaches to fuzzy-rough feature selection","volume":"17","author":"Jensen","year":"2009","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b24","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.knosys.2018.04.004","article-title":"Attribute reduction for multi-label learning with fuzzy rough set","volume":"152","author":"Lin","year":"2018","journal-title":"Knowledge-Based Systems"},{"issue":"5","key":"10.1016\/j.eswa.2021.116428_b25","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1109\/TFUZZ.2019.2939957","article-title":"CoEvil: A coevolutionary model for crime inference based on fuzzy rough feature selection","volume":"28","author":"Liu","year":"2020","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.112845","article-title":"Adaptive intrusion detection via GA-GOGMM-based pattern learning with fuzzy rough set-based attribute selection","volume":"139","author":"Liu","year":"2020","journal-title":"Expert Systems With Applications"},{"key":"10.1016\/j.eswa.2021.116428_b27","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.eswa.2018.06.002","article-title":"A combination of fuzzy similarity measures and fuzzy entropy measures for supervised feature selection","volume":"110","author":"Lohrmann","year":"2018","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"10.1016\/j.eswa.2021.116428_b28","doi-asserted-by":"crossref","first-page":"1166","DOI":"10.1109\/TSMCB.2012.2225832","article-title":"Fuzzy-rough simultaneous attribute selection and feature extraction algorithm","volume":"43","author":"Maji","year":"2013","journal-title":"IEEE Transactions on Cybernetics"},{"issue":"9","key":"10.1016\/j.eswa.2021.116428_b29","doi-asserted-by":"crossref","first-page":"3968","DOI":"10.1016\/j.asoc.2012.09.006","article-title":"On fuzzy-rough attribute selection: Criteria of max-dependency, max-relevance, min-redundancy, and max-significance","volume":"13","author":"Maji","year":"2013","journal-title":"Applied Soft Computing"},{"issue":"8","key":"10.1016\/j.eswa.2021.116428_b30","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1109\/TCYB.2014.2357892","article-title":"IT2 fuzzy-rough sets and max relevance-max significance criterion for attribute selection","volume":"45","author":"Maji","year":"2015","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.eswa.2021.116428_b31","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.ins.2020.04.038","article-title":"Incremental feature selection based on fuzzy rough sets","volume":"536","author":"Ni","year":"2020","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2021.116428_b32","first-page":"344","article-title":"Rough sets","volume":"11","author":"Pawlak","year":"1982","journal-title":"International Journal of Computer Science"},{"key":"10.1016\/j.eswa.2021.116428_b33","series-title":"Rough set-theoretical aspects of reasoning about data","author":"Pawlak","year":"1991"},{"key":"10.1016\/j.eswa.2021.116428_b34","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.fss.2014.04.029","article-title":"Fuzzy-rough feature selection accelerator","volume":"258","author":"Qian","year":"2015","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.eswa.2021.116428_b35","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compind.2018.01.014","article-title":"A novel feature selection method using fuzzy rough sets","volume":"97","author":"Sheeja","year":"2018","journal-title":"Computers In Industry"},{"issue":"1","key":"10.1016\/j.eswa.2021.116428_b36","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1109\/TFUZZ.2020.2989098","article-title":"Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets","volume":"29","author":"Sun","year":"2021","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b37","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2019.104942","article-title":"Feature selection using lebesgue and entropy measures for incomplete neighborhood decision systems","volume":"186","author":"Sun","year":"2019","journal-title":"Knowledge-Based Systems"},{"issue":"3","key":"10.1016\/j.eswa.2021.116428_b38","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1109\/TFUZZ.2018.2862870","article-title":"Intuitionistic fuzzy rough set-based granular structures and attribute subset selection","volume":"27","author":"Tan","year":"2019","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b39","first-page":"1","article-title":"A novel feature selection method for high-dimensional mixed decision tables","author":"Thuy","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2021.116428_b40","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.eswa.2018.02.009","article-title":"Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction","volume":"101","author":"Tiwari","year":"2018","journal-title":"Expert Systems with Applications"},{"issue":"5","key":"10.1016\/j.eswa.2021.116428_b41","doi-asserted-by":"crossref","first-page":"1130","DOI":"10.1109\/TFUZZ.2006.889960","article-title":"Attributes reduction using fuzzy rough sets","volume":"16","author":"Tsang","year":"2008","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"7","key":"10.1016\/j.eswa.2021.116428_b42","first-page":"2986","article-title":"Feature selection based on neighborhood discrimination index","volume":"29","author":"Wang","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.eswa.2021.116428_b43","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ins.2020.11.021","article-title":"Attribute reduction with fuzzy rough self-information measures","volume":"549","author":"Wang","year":"2021","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2021.116428_b44","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.knosys.2018.10.038","article-title":"Fuzzy rough set-based attribute reduction using distance measures","volume":"164","author":"Wang","year":"2019","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.fss.2018.10.021","article-title":"Incremental feature weighting for fuzzy feature selection","volume":"368","author":"Wang","year":"2019","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.eswa.2021.116428_b46","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.knosys.2018.04.023","article-title":"Local neighborhood rough set","volume":"153","author":"Wang","year":"2018","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b47","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.knosys.2016.08.009","article-title":"Feature subset selection based on fuzzy neighborhood rough sets","volume":"111","author":"Wang","year":"2016","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b48","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.ijar.2018.12.013","article-title":"Attribute reduction based on k-nearest neighborhood rough sets","volume":"106","author":"Wang","year":"2019","journal-title":"International Journal of Approximate Reasoning"},{"issue":"2","key":"10.1016\/j.eswa.2021.116428_b49","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1109\/TFUZZ.2009.2013458","article-title":"An interval type-2 fuzzy rough set model for attribute reduction","volume":"17","author":"Wu","year":"2009","journal-title":"IEEE Transactions on Fuzzy Systems"},{"issue":"3","key":"10.1016\/j.eswa.2021.116428_b50","doi-asserted-by":"crossref","first-page":"1257","DOI":"10.1109\/TFUZZ.2017.2718492","article-title":"Incremental perspective for feature selection based on fuzzy rough sets","volume":"26","author":"Yang","year":"2018","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b51","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.ijar.2018.11.010","article-title":"Pseudo-label neighborhood rough set: Measures and attribute reductions","volume":"105","author":"Yang","year":"2019","journal-title":"International Journal of Approximate Reasoning"},{"key":"10.1016\/j.eswa.2021.116428_b52","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1016\/j.knosys.2011.03.007","article-title":"Neighborhood systems-based rough sets in incomplete information system","volume":"24","author":"Yang","year":"2011","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b53","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.ins.2014.02.093","article-title":"Quick attribute reduct algorithm for neighborhood rough set model","volume":"271","author":"Yong","year":"2014","journal-title":"Information Sciences"},{"key":"10.1016\/j.eswa.2021.116428_b54","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.fss.2014.08.014","article-title":"A fuzzy rough set approach for incremental feature selection on hybrid information systems","volume":"258","author":"Zeng","year":"2015","journal-title":"Fuzzy Sets and Systems"},{"key":"10.1016\/j.eswa.2021.116428_b55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.patcog.2016.02.013","article-title":"Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy","volume":"56","author":"Zhang","year":"2016","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2021.116428_b56","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.knosys.2018.03.031","article-title":"A fuzzy rough set-based feature selection method using representative instances","volume":"151","author":"Zhang","year":"2018","journal-title":"Knowledge-Based Systems"},{"issue":"5","key":"10.1016\/j.eswa.2021.116428_b57","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1109\/TFUZZ.2012.2231417","article-title":"RFRR: Robust fuzzy rough reduction","volume":"21","author":"Zhao","year":"2013","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.eswa.2021.116428_b58","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.knosys.2013.12.018","article-title":"Mixed feature selection in incomplete decision table","volume":"57","author":"Zhao","year":"2014","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.116428_b59","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2013.06.012","article-title":"Adaptive neighborhood granularity selection and combination based on margin distribution optimization","volume":"249","author":"Zhu","year":"2013","journal-title":"Information Sciences"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421017152?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421017152?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,20]],"date-time":"2024-02-20T19:59:11Z","timestamp":1708459151000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421017152"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":59,"alternative-id":["S0957417421017152"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116428","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Hybrid filter\u2013wrapper attribute selection with alpha-level fuzzy rough sets","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116428","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116428"}}