{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T09:54:32Z","timestamp":1726480472159},"reference-count":138,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,5,1]],"date-time":"2022-05-01T00:00:00Z","timestamp":1651363200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100020884","name":"ANID","doi-asserted-by":"publisher","award":["PIA\/BASAL AFB180003"],"id":[{"id":"10.13039\/501100020884","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,5]]},"DOI":"10.1016\/j.eswa.2021.116253","type":"journal-article","created":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T16:09:55Z","timestamp":1641053395000},"page":"116253","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["A systematic comparative evaluation of machine learning classifiers and discrete choice models for travel mode choice in the presence of response heterogeneity"],"prefix":"10.1016","volume":"193","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2201-4038","authenticated-orcid":false,"given":"Patricio","family":"Salas","sequence":"first","affiliation":[]},{"given":"Rodrigo","family":"De la Fuente","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2964-2790","authenticated-orcid":false,"given":"Sebastian","family":"Astroza","sequence":"additional","affiliation":[]},{"given":"Juan Antonio","family":"Carrasco","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1784","key":"10.1016\/j.eswa.2021.116253_b1","doi-asserted-by":"crossref","first-page":"115","DOI":"10.3141\/1784-15","article-title":"Artificial neural networks and logit models for traffic safety analysis of toll plazas","author":"Abdelwahab","year":"2002","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b2","first-page":"583","article-title":"Tukey\u2019s honestly significant difference (hsd) test","volume":"3","author":"Abdi","year":"2010","journal-title":"Encyclopedia of Research Design"},{"key":"10.1016\/j.eswa.2021.116253_b3","series-title":"Discrete choice analysis: Theory and application to predict travel demand","author":"Akiva","year":"1985"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b4","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1093\/erae\/31.1.19","article-title":"Stated preferences for imported and hormone-treated beef: Application of a mixed logit model","volume":"31","author":"Alfnes","year":"2004","journal-title":"European Review of Agricultural Economics"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b5","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s11067-007-9043-6","article-title":"On confounding preference heterogeneity and income effect in discrete choice models","volume":"8","author":"Amador","year":"2008","journal-title":"Networks and Spatial Economics"},{"key":"10.1016\/j.eswa.2021.116253_b6","doi-asserted-by":"crossref","unstructured":"Antar, A. D., Ahmed, M., Ishrak, M. S., & Ahad, M. A. R. (2018). A comparative approach to classification of locomotion and transportation modes using smartphone sensor data. In Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers, (1497\u20131502).","DOI":"10.1145\/3267305.3267516"},{"issue":"2\u20133","key":"10.1016\/j.eswa.2021.116253_b7","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/S1366-5545(00)00019-3","article-title":"Confidence intervals to bound the value of time","volume":"37","author":"Armstrong","year":"2001","journal-title":"Transportation Research Part E: Logistics and Transportation Review"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b8","doi-asserted-by":"crossref","first-page":"1755","DOI":"10.1007\/s11116-018-9882-7","article-title":"Representing heterogeneity in structural relationships among multiple choice variables using a latent segmentation approach","volume":"46","author":"Astroza","year":"2019","journal-title":"Transportation"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b9","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1207\/S15324834BASP2503_01","article-title":"Choice of travel mode in the theory of planned behavior: The roles of past behavior, habit, and reasoned action","volume":"25","author":"Bamberg","year":"2003","journal-title":"Basic and Applied Social Psychology"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b10","first-page":"55","article-title":"A mixed logit model of uk household demand for alternative-fuel vehicles","volume":"31","author":"Batley","year":"2004","journal-title":"International Journal of Transport Economics\/Rivista Internazionale Di Economia Dei Trasporti"},{"key":"10.1016\/j.eswa.2021.116253_b11","series-title":"Discrete Choice Methods and their Applications To Short Term Travel Decisions","first-page":"5","author":"Ben-Akiva","year":"1999"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b12","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1002\/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6","article-title":"Neural networks and the multinomial logit for brand choice modelling: A hybrid approach","volume":"19","author":"Bentz","year":"2000","journal-title":"Journal of Forecasting"},{"issue":"Feb","key":"10.1016\/j.eswa.2021.116253_b13","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2021.116253_b14","series-title":"Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures","author":"Bergstra","year":"2013"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b15","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/0191-2615(95)00015-6","article-title":"A heteroscedastic extreme value model of intercity travel mode choice","volume":"29","author":"Bhat","year":"1995","journal-title":"Transportation Research, Part B (Methodological)"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b16","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/S0191-2615(96)00018-5","article-title":"Covariance heterogeneity in nested logit models: econometric structure and application to intercity travel","volume":"31","author":"Bhat","year":"1997","journal-title":"Transportation Research, Part B (Methodological)"},{"issue":"7","key":"10.1016\/j.eswa.2021.116253_b17","first-page":"495","article-title":"Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling","volume":"32","author":"Bhat","year":"1998","journal-title":"Transportation Research Part A: Policy and Practice"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b18","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/S0191-2615(98)00004-6","article-title":"Analysis of travel mode and departure time choice for urban shopping trips","volume":"32","author":"Bhat","year":"1998","journal-title":"Transportation Research, Part B (Methodological)"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b19","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1287\/trsc.34.2.228.12306","article-title":"Incorporating observed and unobserved heterogeneity in urban work travel mode choice modeling","volume":"34","author":"Bhat","year":"2000","journal-title":"Transportation Science"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b20","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/s11238-017-9638-4","article-title":"A new mixed mnp model accommodating a variety of dependent non-normal coefficient distributions","volume":"84","author":"Bhat","year":"2018","journal-title":"Theory and Decision"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b21","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/S0191-2615(97)00014-3","article-title":"A comparison of two alternative behavioral choice mechanisms for household auto ownership decisions","volume":"32","author":"Bhat","year":"1998","journal-title":"Transportation Research, Part B (Methodological)"},{"key":"10.1016\/j.eswa.2021.116253_b22","unstructured":"Bierlaire, M., Axhausen, K., & Abay, G. (2001). The acceptance of modal innovation: The case of swissmetro. In Swiss transport research conference, number CONF."},{"key":"10.1016\/j.eswa.2021.116253_b23","series-title":"Pattern recognition and machine learning","author":"Bishop","year":"2006"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b24","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1016\/j.tre.2007.11.001","article-title":"Joint rp\u2013sp data in a mixed logit analysis of trip timing decisions","volume":"44","author":"B\u00f6rjesson","year":"2008","journal-title":"Transportation Research Part E: Logistics and Transportation Review"},{"key":"10.1016\/j.eswa.2021.116253_b25","doi-asserted-by":"crossref","unstructured":"Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, (pp. 144\u2013152).","DOI":"10.1145\/130385.130401"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b26","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b27","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1016\/j.jtrangeo.2010.07.005","article-title":"Determinants of transport mode choice: a comparison of germany and the usa","volume":"19","author":"Buehler","year":"2011","journal-title":"Journal of Transport Geography"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b28","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1111\/j.1477-9552.2007.00117.x","article-title":"Willingness to pay for rural landscape improvements: Combining mixed logit and random-effects model","volume":"58","author":"Campbell","year":"2007","journal-title":"Journal of Agricultural Economics"},{"key":"10.1016\/j.eswa.2021.116253_b29","unstructured":"Cascetta, E., Nuzzolo, A., Russo, F., & Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems. specification and some calibration results for interurban networks. In Transportation and traffic theory. Proceedings of The 13th international symposium on transportation and traffic theory, Lyon, France, 24-26 1996."},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b30","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/S1361-9209(01)00024-4","article-title":"Built environments and mode choice: toward a normative framework","volume":"7","author":"Cervero","year":"2002","journal-title":"Transportation Research Part D: Transport and Environment"},{"key":"10.1016\/j.eswa.2021.116253_b31","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.amar.2014.09.002","article-title":"A comparison of the mixed logit and latent class methods for crash severity analysis","volume":"3","author":"Cerwick","year":"2014","journal-title":"Analytic Methods in Accident Research"},{"key":"10.1016\/j.eswa.2021.116253_b32","series-title":"Proceedings of the 22nd Acm sigkdd international conference on knowledge discovery and data mining","first-page":"785","article-title":"Xgboost: A scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.eswa.2021.116253_b33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.tbs.2018.09.002","article-title":"Applying a random forest method approach to model travel mode choice behavior","volume":"14","author":"Cheng","year":"2019","journal-title":"Travel Behaviour and Society"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b34","first-page":"345","article-title":"Modeling the competition among air-travel itinerary shares: Gev model development","volume":"39","author":"Coldren","year":"2005","journal-title":"Transportation Research Part A: Policy and Practice"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b35","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/S0969-6997(03)00042-5","article-title":"Modeling aggregate air-travel itinerary shares: logit model development at a major us airline","volume":"9","author":"Coldren","year":"2003","journal-title":"Journal of Air Transport Management"},{"key":"10.1016\/j.eswa.2021.116253_b36","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.trc.2018.11.014","article-title":"An artificial neural network based approach to investigate travellers\u2019 decision rules","volume":"98","author":"Cranenburgh","year":"2019","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b37","first-page":"186","article-title":"Review of rd luce, individual choice behavior: A theoretical analysis","volume":"50","author":"Debreu","year":"1960","journal-title":"American Economic Review"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b38","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/1471-2105-7-3","article-title":"Gene selection and classification of microarray data using random forest","volume":"7","author":"D\u00edaz-Uriarte","year":"2006","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2021.116253_b39","first-page":"65","article-title":"Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance","volume":"100","author":"Ding","year":"2017","journal-title":"Transportation Research Part A: Policy and Practice"},{"key":"10.1016\/j.eswa.2021.116253_b40","unstructured":"Domencich,\u00a0T. A., & McFadden,\u00a0D. (1975). Urban Travel Demand-a Behavioral Analysis: Technical report."},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b41","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s12469-012-0056-2","article-title":"Travel mode choice and transit route choice behavior in montreal: insights from mcgill university members commute patterns","volume":"4","author":"Eluru","year":"2012","journal-title":"Public Transport"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b42","doi-asserted-by":"crossref","first-page":"130","DOI":"10.3141\/2003-16","article-title":"Ohio long-distance travel model","volume":"2003","author":"Erhardt","year":"2007","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b43","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.enconman.2018.02.087","article-title":"Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in china","volume":"164","author":"Fan","year":"2018","journal-title":"Energy Conversion and Management"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b44","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1145\/1882471.1882479","article-title":"Apples-to-apples in cross-validation studies: pitfalls in classifier performance measurement","volume":"12","author":"Forman","year":"2010","journal-title":"ACM SIGKDD Explorations Newsletter"},{"key":"10.1016\/j.eswa.2021.116253_b45","series-title":"A tutorial on bayesian optimization","author":"Frazier","year":"2018"},{"issue":"10","key":"10.1016\/j.eswa.2021.116253_b46","doi-asserted-by":"crossref","first-page":"984","DOI":"10.1016\/j.trb.2009.03.001","article-title":"Sampling of alternatives for route choice modeling","volume":"43","author":"Frejinger","year":"2009","journal-title":"Transportation Research, Part B (Methodological)"},{"key":"10.1016\/j.eswa.2021.116253_b47","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"The Annals of Statistics"},{"key":"10.1016\/j.eswa.2021.116253_b48","series-title":"The Elements of Statistical Learning, Vol. 1","author":"Friedman","year":"2001"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b49","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/0191-2615(89)90038-6","article-title":"Value of time sensitivity to model specification","volume":"23","author":"Gaudry","year":"1989","journal-title":"Transportation Research, Part B (Methodological)"},{"key":"10.1016\/j.eswa.2021.116253_b50","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b51","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1287\/mksc.2.3.203","article-title":"A logit model of brand choice calibrated on scanner data","volume":"2","author":"Guadagni","year":"1983","journal-title":"Marketing Science"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b52","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1007\/s11116-016-9689-3","article-title":"Mode-valued differences of in-vehicle travel time savings","volume":"44","author":"Guevara","year":"2017","journal-title":"Transportation"},{"key":"10.1016\/j.eswa.2021.116253_b53","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.eswa.2017.01.057","article-title":"A comparative study of machine learning classifiers for modeling travel mode choice","volume":"78","author":"Hagenauer","year":"2017","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b54","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/S1366-5545(99)00030-7","article-title":"A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice","volume":"36","author":"Hensher","year":"2000","journal-title":"Transportation Research Part E: Logistics and Transportation Review"},{"issue":"2\u20133","key":"10.1016\/j.eswa.2021.116253_b55","first-page":"221","article-title":"Estimation of value of travel-time savings using mixed logit models","volume":"39","author":"Hess","year":"2005","journal-title":"Transportation Research Part A: Policy and Practice"},{"key":"10.1016\/j.eswa.2021.116253_b56","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocm.2019.100170","article-title":"Apollo: a flexible, powerful and customisable freeware package for choice model estimation and application","author":"Hess","year":"2019","journal-title":"Journal of Choice Modelling"},{"key":"10.1016\/j.eswa.2021.116253_b57","series-title":"A Systematic Review of Machine Learning Methodologies for Modelling Passenger Mode Choice","author":"Hillel","year":"2019"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b58","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s00291-002-0095-1","article-title":"A flexible brand choice model based on neural net methodology: Comparison to the linear utility multinomial logit model and its latent class extension","volume":"24","author":"Hruschka","year":"2002","journal-title":"OR Spectrum"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b59","doi-asserted-by":"crossref","first-page":"2406","DOI":"10.1109\/TITS.2015.2405759","article-title":"Applying machine learning techniques to transportation mode recognition using mobile phone sensor data","volume":"16","author":"Jahangiri","year":"2015","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"key":"10.1016\/j.eswa.2021.116253_b60","series-title":"Evaluating Learning Algorithms: A Classification Perspective","author":"Japkowicz","year":"2011"},{"key":"10.1016\/j.eswa.2021.116253_b61","first-page":"3","article-title":"Introducing the expenditure rate in the estimation of mode choice models","volume":"29","author":"Jara-D\u00edaz","year":"1989","journal-title":"Journal of Transport Economics and Policy, Pages"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b62","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/0191-2615(89)90040-4","article-title":"Detection of income effect in mode choice: theory and application","volume":"23","author":"Jara-D\u00edaz","year":"1989","journal-title":"Transportation Research, Part B (Methodological)"},{"key":"10.1016\/j.eswa.2021.116253_b63","unstructured":"J.d.D., Ort\u00fazar, Donoso, P., & Hutt, G. (1983). The effects of measurement techniques, variable definition and model specification on demand model functions. In 11th PTRC summer annual meeting."},{"key":"10.1016\/j.eswa.2021.116253_b64","unstructured":"J.d.D., Ortuzar, Donoso, P., & Hutt, G. (1983). Codificaci\u00f3n, validaci\u00f3n y evaluaci\u00f3n de informaci\u00f3n para la estimaci\u00f3n de modelos desagregados de elecci\u00f3n discreta. In IV Congreso latinoamericano sobre m\u00e9todos computacionales en ingenier\u00eda. Santiago."},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b65","first-page":"507","article-title":"The effects of attitudes and personality traits on mode choice","volume":"40","author":"Johansson","year":"2006","journal-title":"Transportation Research Part A: Policy and Practice"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b66","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.2308\/accr.2004.79.4.1011","article-title":"Predicting firm financial distress: A mixed logit model","volume":"79","author":"Jones","year":"2004","journal-title":"Accounting Review"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b67","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.trc.2010.10.004","article-title":"Statistical methods versus neural networks in transportation research: Differences, similarities and some insights","volume":"19","author":"Karlaftis","year":"2011","journal-title":"Transportation Research Part C (Emerging Technologies)"},{"key":"10.1016\/j.eswa.2021.116253_b68","series-title":"Artificial Intelligence and Statistics","first-page":"528","article-title":"Fast bayesian optimization of machine learning hyperparameters on large datasets","author":"Klein","year":"2017"},{"key":"10.1016\/j.eswa.2021.116253_b69","series-title":"Ijcai","first-page":"1137","article-title":"A study of cross-validation and bootstrap for accuracy estimation and model selection","volume":"vol. 14","author":"Kohavi","year":"1995"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b70","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/S0191-2615(99)00012-0","article-title":"The paired combinatorial logit model: properties, estimation and application","volume":"34","author":"Koppelman","year":"2000","journal-title":"Transportation Research, Part B (Methodological)"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b71","doi-asserted-by":"crossref","first-page":"119","DOI":"10.3141\/1807-15","article-title":"Analysis of lifestyle choices: Neighborhood type, travel patterns, and activity participation","volume":"1807","author":"Krizek","year":"2002","journal-title":"Transportation Research Record"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b72","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1086\/259131","article-title":"A new approach to consumer theory","volume":"74","author":"Lancaster","year":"1966","journal-title":"Journal of Political Economy"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b73","doi-asserted-by":"crossref","first-page":"91","DOI":"10.3141\/2664-10","article-title":"Investigation of heterogeneity in vehicle ownership and usage for the millennial generation","volume":"2664","author":"Lavieri","year":"2017","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b74","series-title":"Machine learning for prediction of mid to long term habitual transportation mode use","first-page":"4520","author":"Lazar","year":"2019"},{"issue":"49","key":"10.1016\/j.eswa.2021.116253_b75","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1177\/0361198118796971","article-title":"Comparison of four types of artificial neural network and a multinomial logit model for travel mode choice modeling","volume":"2672","author":"Lee","year":"2018","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b76","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.jocm.2018.02.002","article-title":"Airline itinerary choice modeling using machine learning","volume":"31","author":"Lh\u00e9ritier","year":"2019","journal-title":"Journal of Choice Modelling"},{"key":"10.1016\/j.eswa.2021.116253_b77","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.aap.2018.12.020","article-title":"Investigation of driver injury severities in rural single-vehicle crashes under rain conditions using mixed logit and latent class models","volume":"124","author":"Li","year":"2019","journal-title":"Accident Analysis and Prevention"},{"key":"10.1016\/j.eswa.2021.116253_b78","article-title":"Household travel mode choice estimation with large-scale data\u2014an empirical analysis based on mobility data in milan","author":"Liang","year":"2019","journal-title":"International Journal of Sustainable Transportation"},{"issue":"16\u201318","key":"10.1016\/j.eswa.2021.116253_b79","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.1016\/j.neucom.2009.02.018","article-title":"A cross model study of corporate financial distress prediction in taiwan: Multiple discriminant analysis, logit, probit and neural networks models","volume":"72","author":"Lin","year":"2009","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b80","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1145\/3236386.3241340","article-title":"The mythos of model interpretability","volume":"16","author":"Lipton","year":"2018","journal-title":"Queue"},{"key":"10.1016\/j.eswa.2021.116253_b81","unstructured":"Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems, (pp. 4765\u20134774)."},{"issue":"2\u20133","key":"10.1016\/j.eswa.2021.116253_b82","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/S1366-5545(00)00013-2","article-title":"The value of travel time savings in evaluation","volume":"37","author":"Mackie","year":"2001","journal-title":"Transportation Research Part E: Logistics and Transportation Review"},{"key":"10.1016\/j.eswa.2021.116253_b83","series-title":"Analysis of the market demand for high speed rail in the quebec\/ontario corridor","author":"Marwick","year":"1990"},{"key":"10.1016\/j.eswa.2021.116253_b84","first-page":"216","article-title":"Parallel distributed processing","volume":"2","author":"McClelland","year":"1986","journal-title":"Explorations in the Microstructure of Cognition"},{"key":"10.1016\/j.eswa.2021.116253_b85","series-title":"Conditional logit analysis of qualitative choice behavior","author":"McFadden","year":"1973"},{"issue":"673","key":"10.1016\/j.eswa.2021.116253_b86","first-page":"72","article-title":"Modeling the choice of residential location","author":"McFadden","year":"1978","journal-title":"Transportation Research Record"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b87","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1002\/1099-1255(200009\/10)15:5<447::AID-JAE570>3.0.CO;2-1","article-title":"Mixed mnl models for discrete response","volume":"15","author":"McFadden","year":"2000","journal-title":"Journal of Applied Econometrics"},{"issue":"2","key":"10.1016\/j.eswa.2021.116253_b88","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/BF02295996","article-title":"Note on the sampling error of the difference between correlated proportions or percentages","volume":"12","author":"McNemar","year":"1947","journal-title":"Psychometrika"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b89","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1007\/s11116-004-7962-3","article-title":"A tour-based model of travel mode choice","volume":"32","author":"Miller","year":"2005","journal-title":"Transportation"},{"key":"10.1016\/j.eswa.2021.116253_b90","series-title":"Interpretable machine learning","author":"Molnar","year":"2019"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b91","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1016\/j.aap.2010.09.015","article-title":"Mixed logit analysis of bicyclist injury severity resulting from motor vehicle crashes at intersection and non-intersection locations","volume":"43","author":"Moore","year":"2011","journal-title":"Accident Analysis and Prevention"},{"key":"10.1016\/j.eswa.2021.116253_b92","series-title":"Proceedings European Transport Conference","article-title":"Evaluation of mixed logit as a practical modelling alternative","author":"Munizaga","year":"2002"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b93","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3141\/1894-02","article-title":"Numerical analysis of effect of sampling of alternatives in discrete choice models","volume":"1894","author":"Nerella","year":"2004","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b94","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1016\/j.trpro.2015.09.037","article-title":"Predicting travel mode of individuals by machine learning","volume":"10","author":"Omrani","year":"2015","journal-title":"Transportation Research Procedia"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b95","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3141\/2399-01","article-title":"Prediction of individual travel mode with evidential neural network model","volume":"2399","author":"Omrani","year":"2013","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b96","unstructured":"Ortuzar, J. d. D., & Espinosa, A. (1986). Influencia del ingreso y la tasa de motorizaci\u00f3n en la partici\u00f3n modal para el viaje al trabajo. In Tercer Congreso Latino-Iberoamericano de Investigaci\u00f3n Operativa e Ingenier\u00eda de Sistemas, Hotel Crowne Plaza, (pp. 18\u201322)."},{"key":"10.1016\/j.eswa.2021.116253_b97","series-title":"Modelling Transport","author":"Ortuzar","year":"2011"},{"key":"10.1016\/j.eswa.2021.116253_b98","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.jocm.2016.06.002","article-title":"Modelling choice when price is a cue for quality: a case study with chinese consumers","volume":"19","author":"Palma","year":"2016","journal-title":"Journal of Choice Modelling"},{"key":"10.1016\/j.eswa.2021.116253_b99","series-title":"2017 5th IEEE international conference on models and technologies for intelligent transportation systems (MT-ITS)","first-page":"780","article-title":"Machine learning or discrete choice models for car ownership demand estimation and prediction?","author":"Paredes","year":"2017"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b100","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1007\/s11116-013-9504-3","article-title":"Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice","volume":"41","author":"Paulssen","year":"2014","journal-title":"Transportation"},{"issue":"Oct","key":"10.1016\/j.eswa.2021.116253_b101","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b102","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1080\/03081060.2018.1541280","article-title":"A study of tour-based mode choice based on a support vector machine classifier","volume":"42","author":"Pirra","year":"2019","journal-title":"Transportation Planning and Technology"},{"key":"10.1016\/j.eswa.2021.116253_b103","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.spasta.2014.12.002","article-title":"A two-step method for mode choice estimation with socioeconomic and spatial information","volume":"11","author":"Pitombo","year":"2015","journal-title":"Spatial Statistics"},{"key":"10.1016\/j.eswa.2021.116253_b104","series-title":"Ensemble Machine Learning","first-page":"1","article-title":"Ensemble learning","author":"Polikar","year":"2012"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b105","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jtrangeo.2007.01.006","article-title":"Modelling car ownership in urban areas: a case study of Hamilton, Canada","volume":"16","author":"Potoglou","year":"2008","journal-title":"Journal of Transport Geography"},{"key":"10.1016\/j.eswa.2021.116253_b106","series-title":"Model-agnostic interpretability of machine learning","author":"Ribeiro","year":"2016"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b107","doi-asserted-by":"crossref","first-page":"141","DOI":"10.2202\/1542-0485.1080","article-title":"Market segmentation via mixed logit: Extra-virgin olive oil in urban italy","volume":"2","author":"Scarpa","year":"2004","journal-title":"Journal of Agricultural and Food Industrial Organization"},{"issue":"4","key":"10.1016\/j.eswa.2021.116253_b108","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1007\/s11116-007-9112-1","article-title":"Travel mode choice: affected by objective or subjective determinants?","volume":"34","author":"Scheiner","year":"2007","journal-title":"Transportation"},{"key":"10.1016\/j.eswa.2021.116253_b109","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1016\/j.trpro.2016.11.119","article-title":"Mode choice analysis using random forrest decision trees","volume":"17","author":"Sekhar","year":"2016","journal-title":"Transportation Research Procedia"},{"issue":"6","key":"10.1016\/j.eswa.2021.116253_b110","doi-asserted-by":"crossref","first-page":"515","DOI":"10.7307\/ptt.v27i6.1762","article-title":"Potential of big data in forecasting travel times","volume":"27","author":"Semanjski","year":"2015","journal-title":"Promet-Traffic & Transportation"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b111","doi-asserted-by":"crossref","DOI":"10.3390\/s16050716","article-title":"Travel mode detection with varying smartphone data collection frequencies","volume":"16","author":"Shafique","year":"2016","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.eswa.2021.116253_b112","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.aap.2013.05.028","article-title":"A mixed logit analysis of two-vehicle crash severities involving a motorcycle","volume":"61","author":"Shaheed","year":"2013","journal-title":"Accident Analysis and Prevention"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b113","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1068\/a36137","article-title":"Willingness-to-pay estimation with mixed logit models: Some new evidence","volume":"37","author":"Sillano","year":"2005","journal-title":"Environment and Planning A"},{"issue":"8","key":"10.1016\/j.eswa.2021.116253_b114","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1080\/03081060.2015.1079385","article-title":"Decision tree method for modeling travel mode switching in a dynamic behavioral process","volume":"38","author":"Tang","year":"2015","journal-title":"Transportation Planning and Technology"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b115","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)CP.1943-5487.0000752","article-title":"Spatial transferability of neural network models in travel demand modeling","volume":"32","author":"Tang","year":"2018","journal-title":"Journal of Computing in Civil Engineering"},{"key":"10.1016\/j.eswa.2021.116253_b116","first-page":"717","article-title":"Travel mode choice modeling: A comparison of bayesian networks and neural networks","volume":"209\u2013211","author":"Tang","year":"2012","journal-title":"Applied Mechanics and Materials"},{"key":"10.1016\/j.eswa.2021.116253_b117","series-title":"Discrete Choice Methods with Simulation","author":"Train","year":"2009"},{"issue":"7","key":"10.1016\/j.eswa.2021.116253_b118","doi-asserted-by":"crossref","DOI":"10.1063\/5.0015672","article-title":"Multi-fidelity machine-learning with uncertainty quantification and bayesian optimization for materials design: Application to ternary random alloys","volume":"153","author":"Tran","year":"2020","journal-title":"The Journal of Chemical Physics"},{"key":"10.1016\/j.eswa.2021.116253_b119","series-title":"The nature of statistical learning theory","author":"Vapnik","year":"2013"},{"key":"10.1016\/j.eswa.2021.116253_b120","first-page":"164","article-title":"Incorporating the influence of latent modal preferences on travel mode choice behavior","volume":"54","author":"Vij","year":"2013","journal-title":"Transportation Research Part A: Policy and Practice"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b121","doi-asserted-by":"crossref","first-page":"1547","DOI":"10.1109\/TITS.2017.2723523","article-title":"Travel mode detection using gps data and socioeconomic attributes based on a random forest classifier","volume":"19","author":"Wang","year":"2018","journal-title":"IEEE Transactions on Intelligent Transportation Systems"},{"issue":"5","key":"10.1016\/j.eswa.2021.116253_b122","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1080\/03081060.2014.912420","article-title":"Modeling traveler mode choice behavior of a new high-speed rail corridor in china","volume":"37","author":"Wang","year":"2014","journal-title":"Transportation Planning and Technology"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b123","doi-asserted-by":"crossref","first-page":"14285","DOI":"10.1038\/s41598-018-32511-1","article-title":"Enhanced prediction of hot spots at protein-protein interfaces using extreme gradient boosting","volume":"8","author":"Wang","year":"2018","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2021.116253_b124","article-title":"Machine learning travel mode choices: Comparing the performance of an extreme gradient boosting model with a multinomial logit model","author":"Wang","year":"2018","journal-title":"Transportation Research Record"},{"key":"10.1016\/j.eswa.2021.116253_b125","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114770","article-title":"Rice diseases detection and classification using attention based neural network and bayesian optimization","volume":"178","author":"Wang","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116253_b126","series-title":"Framing discrete choice model as deep neural network with utility interpretation","author":"Wang","year":"2018"},{"issue":"7","key":"10.1016\/j.eswa.2021.116253_b127","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1016\/S0191-2615(00)00045-X","article-title":"The generalized nested logit model","volume":"35","author":"Wen","year":"2001","journal-title":"Transportation Research, Part B (Methodological)"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b128","doi-asserted-by":"crossref","DOI":"10.1061\/(ASCE)UP.1943-5444.0000459","article-title":"Modeling mode choice behaviors for public transport commuters in beijing","volume":"144","author":"Weng","year":"2018","journal-title":"Journal of Urban Planning and Development"},{"key":"10.1016\/j.eswa.2021.116253_b129","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.jtrangeo.2013.06.008","article-title":"Mode choice of university students commuting to school and the role of active travel","volume":"31","author":"Whalen","year":"2013","journal-title":"Journal of Transport Geography"},{"issue":"3","key":"10.1016\/j.eswa.2021.116253_b130","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1068\/a090285","article-title":"On the formation of travel demand models and economic evaluation measures of user benefit","volume":"9","author":"Williams","year":"1977","journal-title":"Environment and Planning A"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b131","first-page":"26","article-title":"Hyperparameter optimization for machine learning models based on bayesian optimization","volume":"17","author":"Wu","year":"2019","journal-title":"Journal of Electronic Science and Technology"},{"key":"10.1016\/j.eswa.2021.116253_b132","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.eswa.2017.02.017","article-title":"A boosted decision tree approach using bayesian hyper-parameter optimization for credit scoring","volume":"78","author":"Xia","year":"2017","journal-title":"Expert Systems with Applications"},{"issue":"11","key":"10.1016\/j.eswa.2021.116253_b133","doi-asserted-by":"crossref","first-page":"20843","DOI":"10.3390\/s141120843","article-title":"Using smart phone sensors to detect transportation modes","volume":"14","author":"Xia","year":"2014","journal-title":"Sensors (Switzerland)"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b134","doi-asserted-by":"crossref","first-page":"50","DOI":"10.3141\/1854-06","article-title":"Work travel mode choice modeling with data mining: decision trees and neural networks","volume":"1854","author":"Xie","year":"2003","journal-title":"Transportation Research Record"},{"issue":"9","key":"10.1016\/j.eswa.2021.116253_b135","first-page":"744","article-title":"Inclusion of latent variables in mixed logit models: modelling and forecasting","volume":"44","author":"Y\u00e1\u00f1ez","year":"2010","journal-title":"Transportation Research Part A: Policy and Practice"},{"issue":"12","key":"10.1016\/j.eswa.2021.116253_b136","doi-asserted-by":"crossref","first-page":"1797","DOI":"10.1016\/S0008-8846(98)00165-3","article-title":"Modeling of strength of high-performance concrete using artificial neural networks","volume":"28","author":"Yeh","year":"1998","journal-title":"Cement and Concrete Research"},{"issue":"1","key":"10.1016\/j.eswa.2021.116253_b137","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.eswa.2004.08.005","article-title":"Comparison of country risk models: Hybrid neural networks, logit models, discriminant analysis and cluster techniques","volume":"28","author":"Yim","year":"2005","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116253_b138","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.tbs.2020.02.003","article-title":"Prediction and behavioral analysis of travel mode choice: A comparison of machine learning and logit models","volume":"20","author":"Zhao","year":"2020","journal-title":"Travel Behaviour and Society"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421015633?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421015633?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,20]],"date-time":"2024-02-20T19:58:16Z","timestamp":1708459096000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421015633"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5]]},"references-count":138,"alternative-id":["S0957417421015633"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116253","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A systematic comparative evaluation of machine learning classifiers and discrete choice models for travel mode choice in the presence of response heterogeneity","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116253","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116253"}}