{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T09:11:29Z","timestamp":1726218689511},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,2]]},"DOI":"10.1016\/j.eswa.2021.116055","type":"journal-article","created":{"date-parts":[[2021,10,14]],"date-time":"2021-10-14T05:41:40Z","timestamp":1634190100000},"page":"116055","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":17,"special_numbering":"C","title":["Chaos based portfolio selection: A nonlinear dynamics approach"],"prefix":"10.1016","volume":"188","author":[{"given":"Alessandro","family":"Spelta","sequence":"first","affiliation":[]},{"given":"Nicol\u00f2","family":"Pecora","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0215-4092","authenticated-orcid":false,"given":"Paolo","family":"Pagnottoni","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.eswa.2021.116055_b1","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/S0165-1765(99)00156-1","article-title":"Nonparametric, nonlinear, short-term forecasting: theory and evidence for nonlinearities in the commodity markets","volume":"65","author":"Agnon","year":"1999","journal-title":"Economics Letters"},{"issue":"5\u20137","key":"10.1016\/j.eswa.2021.116055_b2","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1016\/S0165-1889(99)00023-8","article-title":"Martingales, nonlinearity, and chaos","volume":"24","author":"Barnett","year":"2000","journal-title":"Journal of Economic Dynamics and Control"},{"key":"10.1016\/j.eswa.2021.116055_b3","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.physa.2017.03.014","article-title":"Identification of market trends with string and d2-brane maps","volume":"479","author":"Barto\u0161","year":"2017","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"1","key":"10.1016\/j.eswa.2021.116055_b4","first-page":"1","article-title":"Study of prediction models for time series","volume":"67","author":"Barto\u0161","year":"2017","journal-title":"Acta Physica Slovaca"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2021.116055_b5","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/S0378-4371(04)00987-2","article-title":"Clustering stock market companies via chaotic map synchronization","volume":"345","author":"Basalto","year":"2005","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"1","key":"10.1016\/j.eswa.2021.116055_b6","doi-asserted-by":"crossref","DOI":"10.2202\/1558-3708.1007","article-title":"On cycles and chaos in economics","volume":"1","author":"Benhabib","year":"1996","journal-title":"Studies in Nonlinear Dynamics & Econometrics"},{"issue":"349","key":"10.1016\/j.eswa.2021.116055_b7","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1080\/01621459.1975.10480264","article-title":"Intervention analysis with applications to economic and environmental problems","volume":"70","author":"Box","year":"1975","journal-title":"Journal of the American Statistical Association"},{"key":"10.1016\/j.eswa.2021.116055_b8","series-title":"Nonlinear dynamics, chaos, and instability: statistical theory and economic evidence","author":"Brock","year":"1991"},{"issue":"2041","key":"10.1016\/j.eswa.2021.116055_b9","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1098\/rspa.2003.1236","article-title":"Chaos and coherence: a new framework for interest\u2013rate modelling","volume":"460","author":"Brody","year":"2004","journal-title":"Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b10","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1023\/A:1009715923555","article-title":"A tutorial on support vector machines for pattern recognition","volume":"2","author":"Burges","year":"1998","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.eswa.2021.116055_b11","series-title":"Proceedings of 1994 ieee international conference on neural networks (icnn\u201994), Vol. 2","first-page":"1199","article-title":"Neural networks for financial market prediction","author":"Chen","year":"1994"},{"issue":"3\u20134","key":"10.1016\/j.eswa.2021.116055_b12","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/S0378-4371(00)00382-4","article-title":"The entropy as a tool for analysing statistical dependences in financial time series","volume":"287","author":"Darbellay","year":"2000","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"10.1016\/j.eswa.2021.116055_b13","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.cam.2015.12.010","article-title":"Gibbs sampling approach to regime switching analysis of financial time series","volume":"300","author":"Di\u00a0Persio","year":"2016","journal-title":"Journal of Computational and Applied Mathematics"},{"key":"10.1016\/j.eswa.2021.116055_b14","series-title":"AIP conference proceedings, Vol. 1906","article-title":"Analysis of recurrent neural networks for short-term energy load forecasting","author":"Di\u00a0Persio","year":"2017"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b15","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s10287-005-0005-5","article-title":"Support vector machine as an efficient framework for stock market volatility forecasting","volume":"3","author":"Gavrishchaka","year":"2006","journal-title":"Computational Management Science"},{"key":"10.1016\/j.eswa.2021.116055_b16","doi-asserted-by":"crossref","first-page":"6834","DOI":"10.1038\/srep06834","article-title":"Can we predict the unpredictable?","volume":"4","author":"Golestani","year":"2014","journal-title":"Scientific Reports"},{"issue":"1","key":"10.1016\/j.eswa.2021.116055_b17","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0304-4149(78)90069-8","article-title":"On the invertibility of time series models","volume":"8","author":"Granger","year":"1978","journal-title":"Stochastic Processes and their Applications"},{"issue":"1","key":"10.1016\/j.eswa.2021.116055_b18","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.arcontrol.2009.01.002","article-title":"Chaos in economics and finance","volume":"33","author":"Guegan","year":"2009","journal-title":"Annual Reviews in Control"},{"issue":"4\u20136","key":"10.1016\/j.eswa.2021.116055_b19","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/S0378-4754(99)00029-4","article-title":"Non-linear noise reduction and detecting chaos: some evidence from the s&p composite price index","volume":"48","author":"Harrison","year":"1999","journal-title":"Mathematics and Computers in Simulation"},{"issue":"5","key":"10.1016\/j.eswa.2021.116055_b20","doi-asserted-by":"crossref","first-page":"1839","DOI":"10.1111\/j.1540-6261.1991.tb04646.x","article-title":"Chaos and nonlinear dynamics: application to financial markets","volume":"46","author":"Hsieh","year":"1991","journal-title":"The Journal of Finance"},{"issue":"10","key":"10.1016\/j.eswa.2021.116055_b21","doi-asserted-by":"crossref","first-page":"2513","DOI":"10.1016\/j.cor.2004.03.016","article-title":"Forecasting stock market movement direction with support vector machine","volume":"32","author":"Huang","year":"2005","journal-title":"Computers & Operations Research"},{"key":"10.1016\/j.eswa.2021.116055_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2019.122212","article-title":"Cohomology theory for financial time series","volume":"546","author":"Kanjamapornkul","year":"2020","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b23","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1016\/j.asoc.2012.09.024","article-title":"Support vector regression with chaos-based firefly algorithm for stock market price forecasting","volume":"13","author":"Kazem","year":"2013","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2021.116055_b24","series-title":"Chaos theory in the social sciences: foundations and applications","author":"Kiel","year":"1996"},{"key":"10.1016\/j.eswa.2021.116055_b25","unstructured":"Klikov\u00e1, B., & Raidl, A. (2011). Reconstruction of phase space of dynamical systems using method of time delay. In Proceedings of the 20th annual conference wds 2011."},{"key":"10.1016\/j.eswa.2021.116055_b26","first-page":"1","article-title":"Lecture on the markov switching model","author":"Kuan","year":"2002","journal-title":"Institute of Economics Academia Sinica"},{"issue":"1688","key":"10.1016\/j.eswa.2021.116055_b27","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1098\/rsta.1994.0099","article-title":"Chaos and nonlinear forecastability in economics and finance","volume":"348","author":"LeBaron","year":"1994","journal-title":"Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences"},{"key":"10.1016\/j.eswa.2021.116055_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114443","article-title":"Multidimensional knn algorithm based on eemd and complexity measures in financial time series forecasting","volume":"168","author":"Lin","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116055_b29","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113082","article-title":"Dstp- rnn: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction","volume":"143","author":"Liu","year":"2020","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b30","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1175\/1520-0469(1963)020<0130:DNF>2.0.CO;2","article-title":"Deterministic nonperiodic flow","volume":"20","author":"Lorenz","year":"1963","journal-title":"Journal of Atmospheric Sciences"},{"key":"10.1016\/j.eswa.2021.116055_b31","series-title":"2008 ieee congress on evolutionary computation (ieee world congress on computational intelligence)","first-page":"1276","article-title":"Prediction of s&p 500 and djia stock indices using particle swarm optimization technique","author":"Majhi","year":"2008"},{"issue":"11","key":"10.1016\/j.eswa.2021.116055_b32","doi-asserted-by":"crossref","first-page":"1605","DOI":"10.1016\/S0378-4266(99)00017-5","article-title":"Methodological issues in asset pricing: Random walk or chaotic dynamics","volume":"23","author":"Malliaris","year":"1999","journal-title":"Journal of Banking & Finance"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b33","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1038\/scientificamerican0299-70","article-title":"A multifractal walk down wall street","volume":"280","author":"Mandelbrot","year":"1999","journal-title":"Scientific American"},{"key":"10.1016\/j.eswa.2021.116055_b34","first-page":"77","article-title":"Portfolio selection","volume":"7","author":"Markowitz","year":"1952","journal-title":"The Journal of Finance"},{"key":"10.1016\/j.eswa.2021.116055_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113191","article-title":"Applying genetic algorithms with speciation for optimization of grid template pattern detection in financial markets","volume":"147","author":"Martins","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.116055_b36","series-title":"Contemporary ideas on ship stability and capsizing in waves","first-page":"415","article-title":"Use of lyapunov exponents to predict chaotic vessel motions","author":"McCue","year":"2011"},{"issue":"4","key":"10.1016\/j.eswa.2021.116055_b37","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1007\/s10462-012-9342-2","article-title":"Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications","volume":"42","author":"Neshat","year":"2014","journal-title":"Artificial Intelligence Review"},{"key":"10.1016\/j.eswa.2021.116055_b38","series-title":"Chaos and order in the capital markets: a new view of cycles, prices, and market volatility","author":"Peters","year":"1996"},{"key":"10.1016\/j.eswa.2021.116055_b39","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.physa.2015.05.013","article-title":"With string model to time series forecasting","volume":"436","author":"Pin\u010d\u00e1k","year":"2015","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"1","key":"10.1016\/j.eswa.2021.116055_b40","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1111\/j.1467-9892.1980.tb00300.x","article-title":"State-dependent models: A general approach to non-linear time series analysis","volume":"1","author":"Priestley","year":"1980","journal-title":"Journal of Time Series Analysis"},{"issue":"5","key":"10.1016\/j.eswa.2021.116055_b41","doi-asserted-by":"crossref","first-page":"6162","DOI":"10.1103\/PhysRevE.55.6162","article-title":"False-nearest-neighbors algorithm and noise-corrupted time series","volume":"55","author":"Rhodes","year":"1997","journal-title":"Physical Review E"},{"key":"10.1016\/j.eswa.2021.116055_b42","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1214\/13-PS218","article-title":"Gaussian multiplicative chaos and applications: a review","volume":"11","author":"Rhodes","year":"2014","journal-title":"Probability Surveys"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2021.116055_b43","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/0167-2789(93)90009-P","article-title":"A practical method for calculating largest lyapunov exponents from small data sets","volume":"65","author":"Rosenstein","year":"1993","journal-title":"Physica D: Nonlinear Phenomena"},{"issue":"3","key":"10.1016\/j.eswa.2021.116055_b44","doi-asserted-by":"crossref","DOI":"10.2202\/1558-3708.1060","article-title":"On nonlinear, stochastic dynamics in economic and financial time series","volume":"4","author":"Schittenkopf","year":"2000","journal-title":"Studies in Nonlinear Dynamics & Econometrics"},{"issue":"6","key":"10.1016\/j.eswa.2021.116055_b45","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.eswa.2021.116055_b46","series-title":"Chaos and time-series analysis","author":"Sprott","year":"2003"},{"key":"10.1016\/j.eswa.2021.116055_b47","series-title":"Global theory of dynamical systems","first-page":"425","article-title":"Motion under the influence of a strong constraining force","author":"Takens","year":"1980"},{"key":"10.1016\/j.eswa.2021.116055_b48","series-title":"Exploration of a nonlinear world: an appreciation of howell tong\u2019s contributions to statistics","first-page":"9","article-title":"Threshold autoregression, limit cycles and cyclical data","author":"Tong","year":"2009"},{"issue":"2","key":"10.1016\/j.eswa.2021.116055_b49","first-page":"241","article-title":"State space reconstruction for multivariate time series prediction","volume":"11","author":"Vlachos","year":"2008","journal-title":"Nonlinear Phenomena in Complex Systems"},{"key":"10.1016\/j.eswa.2021.116055_b50","series-title":"Forecasting: methods and applications","author":"Wheelwright","year":"1998"},{"key":"10.1016\/j.eswa.2021.116055_b51","article-title":"If2cnn: Towards non-stationary time series feature extraction by integrating iterative filtering and convolutional neural networks","author":"Zhou","year":"2020","journal-title":"Expert Systems with Applications"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421013968?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421013968?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,12]],"date-time":"2023-03-12T08:27:48Z","timestamp":1678609668000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421013968"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2]]},"references-count":51,"alternative-id":["S0957417421013968"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116055","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2022,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Chaos based portfolio selection: A nonlinear dynamics approach","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.116055","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116055"}}