{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:49:16Z","timestamp":1740116956731,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61772475","61906172"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFB1201403"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000266","name":"Engineering and Physical Sciences Research Council","doi-asserted-by":"publisher","award":["EP\/N025849\/1"],"id":[{"id":"10.13039\/501100000266","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.eswa.2021.115973","type":"journal-article","created":{"date-parts":[[2021,10,4]],"date-time":"2021-10-04T19:31:10Z","timestamp":1633375870000},"page":"115973","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Deep correlation mining for multi-task image clustering"],"prefix":"10.1016","volume":"187","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0002-9300","authenticated-orcid":false,"given":"Xiaoqiang","family":"Yan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2680-7921","authenticated-orcid":false,"given":"Kaiyuan","family":"Shi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7027-8313","authenticated-orcid":false,"given":"Yangdong","family":"Ye","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7655-9228","authenticated-orcid":false,"given":"Hui","family":"Yu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"unstructured":"Asano, Y. M., Rupprecht, C., & Vedaldi, A. (2020). Self-labelling via simultaneous clustering and representation learning. In Proceedings of the international conference on learning representations (ICLR).","key":"10.1016\/j.eswa.2021.115973_b1"},{"issue":"1","key":"10.1016\/j.eswa.2021.115973_b2","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1023\/A:1007327622663","article-title":"A Bayesian\/information theoretic model of learning to learn via multiple task sampling","volume":"28","author":"Baxter","year":"1997","journal-title":"Machine Learning"},{"issue":"2","key":"10.1016\/j.eswa.2021.115973_b3","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1109\/TNNLS.2018.2839114","article-title":"Exploring correlations among tasks, clusters, and features for multitask clustering","volume":"30","author":"Cao","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems (TNNLS)"},{"doi-asserted-by":"crossref","unstructured":"Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the European conference on computer vision (ECCV) (pp. 139\u2013156).","key":"10.1016\/j.eswa.2021.115973_b4","DOI":"10.1007\/978-3-030-01264-9_9"},{"doi-asserted-by":"crossref","unstructured":"Chang, J., Wang, L., Meng, G., Xiang, S., & Pan, C. (2017). Deep adaptive image clustering. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 5880\u20135888).","key":"10.1016\/j.eswa.2021.115973_b5","DOI":"10.1109\/ICCV.2017.626"},{"key":"10.1016\/j.eswa.2021.115973_b6","article-title":"A two-step hybrid unsupervised model with attention mechanism for aspect extraction","volume":"161","author":"Chauhan","year":"2020","journal-title":"Expert Systems with Applications (ESWA)"},{"doi-asserted-by":"crossref","unstructured":"Chen, X., Huang, J. Z., Nie, F., Chen, R., & Wu, Q. (2017). A self-balanced min-cut algorithm for image clustering. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 2080\u20132088).","key":"10.1016\/j.eswa.2021.115973_b7","DOI":"10.1109\/ICCV.2017.227"},{"doi-asserted-by":"crossref","unstructured":"Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., & Zheng, Y. (2009). NUS-WIDE: A real-world web image database from national university of Singapore. In Proceedings of the ACM international conference on image and video retrieval (CIVR).","key":"10.1016\/j.eswa.2021.115973_b8","DOI":"10.1145\/1646396.1646452"},{"doi-asserted-by":"crossref","unstructured":"Dueck, D., & Frey, B. J. (2007). Non-metric affinity propagation for unsupervised image gategorization. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 1\u20138).","key":"10.1016\/j.eswa.2021.115973_b9","DOI":"10.1109\/ICCV.2007.4408853"},{"issue":"2","key":"10.1016\/j.eswa.2021.115973_b10","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","article-title":"The pascal visual object classes (VOC) challenge","volume":"88","author":"Everingham","year":"2010","journal-title":"International Journal of Computer Vision (IJCV)"},{"key":"10.1016\/j.eswa.2021.115973_b11","article-title":"A feature transfer enabled multi-task deep learning model on medical imaging","volume":"143","author":"Gao","year":"2020","journal-title":"Expert Systems with Applications (ESWA)"},{"issue":"2","key":"10.1016\/j.eswa.2021.115973_b12","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1007\/s12559-019-09667-7","article-title":"How deep should be the depth of convolutional neural networks: a backyard dog case study","volume":"12","author":"Gorban","year":"2020","journal-title":"Cognitive Computation"},{"key":"10.1016\/j.eswa.2021.115973_b13","series-title":"Technical report 7694","article-title":"Caltech-256 object category dataset","author":"Griffin","year":"2007"},{"doi-asserted-by":"crossref","unstructured":"Gu, Q., Li, Z., & Han, J. (2011). Learning a kernel for multi-task clustering. In Proceedings of the the association for the advance of artificial intelligence (AAAI) (pp. 368\u2013373).","key":"10.1016\/j.eswa.2021.115973_b14","DOI":"10.1609\/aaai.v25i1.7914"},{"doi-asserted-by":"crossref","unstructured":"Gu, Q., & Zhou, J. (2009). Learning the shared subspace for multi-task clustering and transductive transfer classification. In Proceedings of the international conference on data mining (ICDM) (pp. 159\u2013168).","key":"10.1016\/j.eswa.2021.115973_b15","DOI":"10.1109\/ICDM.2009.32"},{"doi-asserted-by":"crossref","unstructured":"Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved deep embedded clustering with local structure preservation. In Proceedings of the international joint conference on artificial intelligence (IJCAI) (pp. 1753\u20131759).","key":"10.1016\/j.eswa.2021.115973_b16","DOI":"10.24963\/ijcai.2017\/243"},{"unstructured":"Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., & Bengio, Y. (2019). Learning deep representations by mutual information estimation and maximization. In Proceedings of the international conference on learning representations (ICLR).","key":"10.1016\/j.eswa.2021.115973_b17"},{"issue":"3","key":"10.1016\/j.eswa.2021.115973_b18","first-page":"1113","article-title":"Multi-task image clustering through correlation propagation","volume":"33","author":"Hu","year":"2021","journal-title":"IEEE Transactions on Knowledge and Data Engineering (TKDE)"},{"key":"10.1016\/j.eswa.2021.115973_b19","series-title":"IEEE conference on computer vision and pattern recognition (CVPR)","first-page":"8846","article-title":"Deep semantic clustering by partition confidence maximisation","author":"Huang","year":"2020"},{"issue":"6","key":"10.1016\/j.eswa.2021.115973_b20","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1109\/TPAMI.2011.25","article-title":"Unsupervised image categorization by hypergraph partition","volume":"33","author":"Huang","year":"2011","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)"},{"doi-asserted-by":"crossref","unstructured":"Ji, X., Vedaldi, A., & Henriques, J. F. (2019). Invariant information clustering for unsupervised image classification and segmentation. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 9864\u20139873).","key":"10.1016\/j.eswa.2021.115973_b21","DOI":"10.1109\/ICCV.2019.00996"},{"key":"10.1016\/j.eswa.2021.115973_b22","series-title":"Technical report","article-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"unstructured":"Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Proceedings of the advances in neural information processing systems (NeurIPS) (pp. 1106\u20131114).","key":"10.1016\/j.eswa.2021.115973_b23"},{"key":"10.1016\/j.eswa.2021.115973_b24","series-title":"IEEE conference on computer vision and pattern recognition (CVPR)","first-page":"9067","article-title":"Deep fair clustering for visual learning","author":"Li","year":"2020"},{"issue":"3","key":"10.1016\/j.eswa.2021.115973_b25","doi-asserted-by":"crossref","first-page":"982","DOI":"10.1109\/TSMCB.2012.2220543","article-title":"Understanding and enhancement of internal clustering validation measures","volume":"43","author":"Liu","year":"2013","journal-title":"IEEE Transactions on Cybernetics (TCYB)"},{"key":"10.1016\/j.eswa.2021.115973_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2020.12.089","article-title":"Deep learning for monocular depth estimation: A review","author":"Ming","year":"2021","journal-title":"Neurocomputing"},{"doi-asserted-by":"crossref","unstructured":"Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1717\u20131724).","key":"10.1016\/j.eswa.2021.115973_b27","DOI":"10.1109\/CVPR.2014.222"},{"issue":"10","key":"10.1016\/j.eswa.2021.115973_b28","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A survey on transfer learning","volume":"22","author":"Pan","year":"2010","journal-title":"IEEE Transactions on Knowledge and Data Engineering (TKDE)"},{"doi-asserted-by":"crossref","unstructured":"Rozantsev, A., Salzmann, M., & Fua, P. (2018). Residual parameter transfer for deep domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 4339\u20134348).","key":"10.1016\/j.eswa.2021.115973_b29","DOI":"10.1109\/CVPR.2018.00456"},{"unstructured":"Shaham, U., Stanton, K. P., Li, H., Basri, R., Nadler, B., & Kluger, Y. (2018). SpectralNet: Spectral clustering using deep neural networks. In Proceedings of the international conference on learning representations (ICLR).","key":"10.1016\/j.eswa.2021.115973_b30"},{"key":"10.1016\/j.eswa.2021.115973_b31","first-page":"583","article-title":"Cluster ensembles \u2014 A knowledge reuse framework for combining multiple partitions","volume":"3","author":"Strehl","year":"2002","journal-title":"Journal of Machchine Learning and Research (JMLR)"},{"unstructured":"Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. A survey on deep transfer learning. In Proceedings the international conference of the artificial neural networks and machine learning.","key":"10.1016\/j.eswa.2021.115973_b32"},{"key":"10.1016\/j.eswa.2021.115973_b33","series-title":"IEEE conference on computer vision and pattern recognition (CVPR)","first-page":"8722","article-title":"Unsupervised domain adaptation via structurally regularized deep clustering","author":"Tang","year":"2020"},{"doi-asserted-by":"crossref","unstructured":"Wu, J., Long, K., Wang, F., Qian, C., Li, C., Lin, Z., & Zha, H. (2019). Deep comprehensive correlation mining for image clustering. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 8149\u20138158).","key":"10.1016\/j.eswa.2021.115973_b34","DOI":"10.1109\/ICCV.2019.00824"},{"unstructured":"Xie, J., Girshick, R. B., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In Proceedings of the international conference on machine learning (ICML) (pp. 478\u2013487).","key":"10.1016\/j.eswa.2021.115973_b35"},{"doi-asserted-by":"crossref","unstructured":"Yan, X., Hu, S., & Ye, Y. (2017). Multi-task clustering of human actions by sharing information. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 4049\u20134057).","key":"10.1016\/j.eswa.2021.115973_b36","DOI":"10.1109\/CVPR.2017.431"},{"issue":"2","key":"10.1016\/j.eswa.2021.115973_b37","doi-asserted-by":"crossref","first-page":"15:1","DOI":"10.1145\/3375394","article-title":"Multi-task information bottleneck co-clustering for unsupervised cross-view human action categorization","volume":"14","author":"Yan","year":"2020","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"key":"10.1016\/j.eswa.2021.115973_b38","series-title":"SIAM international conference on data mining (SDM)","first-page":"658","article-title":"Heterogeneous dual-task clustering with visual-textual information","author":"Yan","year":"2020"},{"issue":"10","key":"10.1016\/j.eswa.2021.115973_b39","doi-asserted-by":"crossref","first-page":"2984","DOI":"10.1109\/TIP.2015.2438540","article-title":"Egocentric daily activity recognition via multitask clustering","volume":"24","author":"Yan","year":"2015","journal-title":"IEEE Transactions on Image Processing (TIP)"},{"unstructured":"Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2017). Towards K-means-friendly spaces: Simultaneous deep learning and clustering. In Proceedings of the international conference on machine learning (ICML) (pp. 3861\u20133870).","key":"10.1016\/j.eswa.2021.115973_b40"},{"issue":"5","key":"10.1016\/j.eswa.2021.115973_b41","first-page":"1069","article-title":"Multitask spectral clustering by exploring intertask correlation","volume":"45","author":"Yang","year":"2015","journal-title":"IEEE Transactions on Cybernetics (TCYB)"},{"key":"10.1016\/j.eswa.2021.115973_b42","doi-asserted-by":"crossref","first-page":"2780","DOI":"10.1109\/TIP.2019.2952696","article-title":"Adaptive sample-level graph combination for partial multiview clustering","volume":"29","author":"Yang","year":"2020","journal-title":"IEEE Transactions on Image Processing (TIP)"},{"issue":"10","key":"10.1016\/j.eswa.2021.115973_b43","doi-asserted-by":"crossref","first-page":"2761","DOI":"10.1109\/TIP.2010.2049235","article-title":"Image clustering using local discriminant models and global integration","volume":"19","author":"Yang","year":"2010","journal-title":"IEEE Transactions on Image Processing (TIP)"},{"key":"10.1016\/j.eswa.2021.115973_b44","article-title":"A novel multi-task linear mixed model for smartphone-based telemonitoring","volume":"164","author":"Yoon","year":"2021","journal-title":"Expert Systems with Applications (ESWA)"},{"issue":"1","key":"10.1016\/j.eswa.2021.115973_b45","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/TPAMI.2014.2343221","article-title":"Convex discriminative multitask clustering","volume":"37","author":"Zhang","year":"2015","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)"},{"issue":"4","key":"10.1016\/j.eswa.2021.115973_b46","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1007\/s12559-020-09717-5","article-title":"Cognitive template-clustering improved LineMod for efficient multi-object pose estimation","volume":"12","author":"Zhang","year":"2020","journal-title":"Cognitive Computation"},{"doi-asserted-by":"crossref","unstructured":"Zhang, J., & Zhang, C. (2010). Multitask bregman clustering. In Proceedings of the the association for the advance of artificial intelligence (AAAI) (pp. 28\u201340).","key":"10.1016\/j.eswa.2021.115973_b47","DOI":"10.1609\/aaai.v24i1.7674"},{"issue":"1","key":"10.1016\/j.eswa.2021.115973_b48","doi-asserted-by":"crossref","first-page":"8:1","DOI":"10.1145\/2747879","article-title":"Smart multitask bregman clustering and multitask kernel clustering","volume":"10","author":"Zhang","year":"2015","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"issue":"12","key":"10.1016\/j.eswa.2021.115973_b49","doi-asserted-by":"crossref","first-page":"3324","DOI":"10.1109\/TKDE.2016.2603983","article-title":"Multi-task multi-view clustering","volume":"28","author":"Zhang","year":"2016","journal-title":"IEEE Transactions on Knowledge and Data Engineering (TKDE)"},{"issue":"1","key":"10.1016\/j.eswa.2021.115973_b50","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/j.patcog.2011.05.011","article-title":"Multi-task clustering via domain adaptation","volume":"45","author":"Zhang","year":"2012","journal-title":"Pattern Recognition (PR)"},{"doi-asserted-by":"crossref","unstructured":"Zou, F., Shen, L., Jie, Z., Zhang, W., & Liu, W. (2019). A sufficient condition for convergences of adam and RMSProp. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 11127\u201311135).","key":"10.1016\/j.eswa.2021.115973_b51","DOI":"10.1109\/CVPR.2019.01138"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421013233?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421013233?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,12]],"date-time":"2023-03-12T08:21:26Z","timestamp":1678609286000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421013233"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":51,"alternative-id":["S0957417421013233"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.115973","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep correlation mining for multi-task image clustering","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.115973","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"115973"}}