{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T11:28:33Z","timestamp":1742642913789},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,9,1]],"date-time":"2021-09-01T00:00:00Z","timestamp":1630454400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2021,9]]},"DOI":"10.1016\/j.eswa.2021.114913","type":"journal-article","created":{"date-parts":[[2021,3,20]],"date-time":"2021-03-20T03:46:45Z","timestamp":1616212005000},"page":"114913","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["ExEm: Expert embedding using dominating set theory with deep learning approaches"],"prefix":"10.1016","volume":"177","author":[{"given":"Narjes","family":"Nikzad-Khasmakhi","sequence":"first","affiliation":[]},{"given":"Mohammadali","family":"Balafar","sequence":"additional","affiliation":[]},{"given":"M. Reza","family":"Feizi-Derakhshi","sequence":"additional","affiliation":[]},{"given":"Cina","family":"Motamed","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.eswa.2021.114913_b0005","first-page":"1","article-title":"Missing link prediction using common neighbor and centrality based parameterized algorithm","volume":"10","author":"Ahmad","year":"2020","journal-title":"Scientific Reports"},{"issue":"2","key":"10.1016\/j.eswa.2021.114913_b0010","doi-asserted-by":"crossref","first-page":"33","DOI":"10.14257\/ijfgcn.2018.11.2.04","article-title":"Finding communities in social networks with node attribute and graph structure using jaya optimization algorithm","volume":"11","author":"Ahuja","year":"2018","journal-title":"International Journal of Future Generation Communication and Networking"},{"key":"10.1016\/j.eswa.2021.114913_b0015","series-title":"Third international AAAI conference on weblogs and social media","article-title":"Gephi: An open source software for exploring and manipulating networks","author":"Bastian","year":"2009"},{"issue":"10","key":"10.1016\/j.eswa.2021.114913_b0020","doi-asserted-by":"crossref","first-page":"P10008","DOI":"10.1088\/1742-5468\/2008\/10\/P10008","article-title":"Fast unfolding of communities in large networks","volume":"2008","author":"Blondel","year":"2008","journal-title":"Journal of Statistical Mechanics: Theory and Experiment"},{"issue":"9","key":"10.1016\/j.eswa.2021.114913_b0025","doi-asserted-by":"crossref","first-page":"1616","DOI":"10.1109\/TKDE.2018.2807452","article-title":"A comprehensive survey of graph embedding: Problems, techniques, and applications","volume":"30","author":"Cai","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0030","doi-asserted-by":"crossref","unstructured":"Cao, S., Lu, W., & Xu, Q. (2015). Grarep: Learning graph representations with global structural information. In Proceedings of the 24th ACM international on conference on information and knowledge management (pp. 891\u2013900). ACM.","DOI":"10.1145\/2806416.2806512"},{"key":"10.1016\/j.eswa.2021.114913_b0035","series-title":"Thirtieth AAAI conference on artificial","article-title":"Deep neural networks for learning graph representations","author":"Cao","year":"2016"},{"key":"10.1016\/j.eswa.2021.114913_b0040","doi-asserted-by":"crossref","DOI":"10.1093\/nar\/gkw1102","article-title":"The BioGRID interaction database: 2017 update","author":"Chatr-Aryamontri","year":"2017","journal-title":"Nucleic Acids Research"},{"key":"10.1016\/j.eswa.2021.114913_b0045","doi-asserted-by":"crossref","first-page":"28122","DOI":"10.1109\/ACCESS.2018.2838259","article-title":"Link prediction on directed networks based on auc optimization","volume":"6","author":"Chen","year":"2018","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.eswa.2021.114913_b0050","doi-asserted-by":"crossref","first-page":"1465","DOI":"10.1109\/TKDE.2014.2382599","article-title":"A unified feature selection framework for graph embedding on high dimensional data","volume":"27","author":"Chen","year":"2014","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2021.114913_b0055","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1186\/s12859-018-2163-9","article-title":"Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches","volume":"19","author":"Crichton","year":"2018","journal-title":"BMC Bioinformatics"},{"issue":"5","key":"10.1016\/j.eswa.2021.114913_b0060","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1109\/TKDE.2018.2849727","article-title":"A survey on network embedding","volume":"31","author":"Cui","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2009.04.002","article-title":"Combining feature spaces for classification","author":"Damoulas","year":"2009","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2021.114913_b0070","volume":"Vol. 77","author":"Du","year":"2012"},{"key":"10.1016\/j.eswa.2021.114913_b0075","series-title":"Topics in structural graph theory","first-page":"268","article-title":"Connectivity algorithms","author":"Esfahanian","year":"2013"},{"key":"10.1016\/j.eswa.2021.114913_b0080","unstructured":"Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9(Aug), 1871\u20131874."},{"key":"10.1016\/j.eswa.2021.114913_b0085","doi-asserted-by":"crossref","unstructured":"Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A survey. Knowledge-Based Systems.","DOI":"10.1016\/j.knosys.2018.03.022"},{"key":"10.1016\/j.eswa.2021.114913_b0090","doi-asserted-by":"crossref","unstructured":"Goyal, P., Chhetri, S. R., & Canedo, A. (2019). dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowledge-Based Systems.","DOI":"10.1016\/j.knosys.2019.06.024"},{"key":"10.1016\/j.eswa.2021.114913_b0095","series-title":"Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining","article-title":"Node2vec: Scalable feature learning for networks","author":"Grover","year":"2016"},{"key":"10.1016\/j.eswa.2021.114913_b0100","unstructured":"Gu, S., & Milenkovic, T. (2018). Graphlets versus node2vec and struc2vec in the task of network alignment. arXiv preprint arXiv:1805.04222."},{"key":"10.1016\/j.eswa.2021.114913_b0105","doi-asserted-by":"crossref","DOI":"10.1109\/TKDE.2016.2638425","article-title":"SSE: Semantically smooth embedding for knowledge graphs","author":"Guo","year":"2017","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0110","series-title":"Data mining in dynamic social networks and fuzzy systems","first-page":"25","article-title":"Data preprocessing for dynamic social network analysis","author":"Gupta","year":"2013"},{"key":"10.1016\/j.eswa.2021.114913_b0115","doi-asserted-by":"crossref","unstructured":"Huang, X., Zhang, J., Li, D., & Li, P. (2019). Knowledge graph embedding based question answering. In Proceedings of the twelfth ACM international conference on web search and data mining (pp. 105\u20131130). ACM.","DOI":"10.1145\/3289600.3290956"},{"key":"10.1016\/j.eswa.2021.114913_b0120","unstructured":"Joulin, A., Grave, E., Bojanowski, P., Douze, M., J\u00e9gou, H., & Mikolov, T. (2016). Fasttext. zip: Compressing text classification models. arXiv preprint arXiv:1612.03651."},{"key":"10.1016\/j.eswa.2021.114913_b0125","unstructured":"Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., & Poupart, P. (2019). Relational representation learning for dynamic (knowledge) graphs: A survey. arXiv preprint arXiv:1905.11485, abs\/1905.11485."},{"key":"10.1016\/j.eswa.2021.114913_b0130","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.knosys.2018.02.028","article-title":"Community aware random walk for network embedding","volume":"148","author":"Keikha","year":"2018","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.eswa.2021.114913_b0135","series-title":"Snap datasets: Stanford large network dataset collection","author":"Leskovec","year":"2014"},{"issue":"12","key":"10.1016\/j.eswa.2021.114913_b0140","doi-asserted-by":"crossref","first-page":"2257","DOI":"10.1109\/TKDE.2018.2819980","article-title":"Attributed social network embedding","volume":"30","author":"Liao","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0145","unstructured":"Lison, P., & Kutuzov, A. (2017). Redefining context windows for word embedding models: An experimental study. arXiv preprint arXiv:1704.05781."},{"key":"10.1016\/j.eswa.2021.114913_b0150","series-title":"Proceedings of the 2016 ACM SIGSAC conference on computer and communications security","first-page":"492","article-title":"Smartwalk: Enhancing social network security via adaptive random walks","author":"Liu","year":"2016"},{"key":"10.1016\/j.eswa.2021.114913_b0155","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.physa.2014.10.006","article-title":"A new method to construct co-author networks","volume":"419","author":"Liu","year":"2015","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"issue":"3","key":"10.1016\/j.eswa.2021.114913_b0160","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1016\/j.ipm.2016.12.007","article-title":"Interpreting the formation of co-author networks via utility analysis","volume":"53","author":"Li","year":"2017","journal-title":"Information Processing & Management"},{"key":"10.1016\/j.eswa.2021.114913_b0165","doi-asserted-by":"crossref","unstructured":"Mahdavi, S., Khoshraftar, S., & An, A. (2018). dynnode2vec: Scalable dynamic network embedding. In 2018 IEEE international conference on big data (Big Data) (pp. 3762\u20133765). IEEE.","DOI":"10.1109\/BigData.2018.8621910"},{"issue":"4","key":"10.1016\/j.eswa.2021.114913_b0170","doi-asserted-by":"crossref","first-page":"921","DOI":"10.1109\/TKDE.2016.2632716","article-title":"Using geodesic space density gradients for network community detection","volume":"29","author":"Mahmood","year":"2016","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0175","unstructured":"Mahoney, M. (2011). Large text compression benchmark. URL: http:\/\/www.mattmahoney.net\/text\/text.html."},{"key":"10.1016\/j.eswa.2021.114913_b0180","unstructured":"Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781."},{"key":"10.1016\/j.eswa.2021.114913_b0185","series-title":"Advances in Neural Information Processing Systems","first-page":"3111","article-title":"Distributed representations of words and phrases and their compositionality","author":"Mikolov","year":"2013"},{"key":"10.1016\/j.eswa.2021.114913_b0190","doi-asserted-by":"crossref","first-page":"6308","DOI":"10.1038\/srep06308","article-title":"Dominating scale-free networks using generalized probabilistic methods","volume":"4","author":"Moln\u00e1r","year":"2014","journal-title":"Scientific Reports"},{"key":"10.1016\/j.eswa.2021.114913_b0195","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.engappai.2019.03.020","article-title":"The state-of-the-art in expert recommendation systems","volume":"82","author":"Nikzad-Khasmakhi","year":"2019","journal-title":"Engineering Applications of Artificial Intelligence"},{"issue":"1","key":"10.1016\/j.eswa.2021.114913_b0200","first-page":"29","article-title":"Graph embedding and dimensionality reduction-a survey","volume":"4","author":"Nishana","year":"2013","journal-title":"International Journal of Computer Science & Engineering Technology (IJCSET)"},{"key":"10.1016\/j.eswa.2021.114913_b0205","doi-asserted-by":"crossref","unstructured":"Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding. In Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD \u201916 (pp. 1105\u20131114). New York, NY, USA. ACM.","DOI":"10.1145\/2939672.2939751"},{"issue":"9","key":"10.1016\/j.eswa.2021.114913_b0210","first-page":"12","article-title":"Tri-party deep network representation","volume":"11","author":"Pan","year":"2016","journal-title":"Network"},{"key":"10.1016\/j.eswa.2021.114913_b0215","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701\u2013710). ACM.","DOI":"10.1145\/2623330.2623732"},{"key":"10.1016\/j.eswa.2021.114913_b0220","doi-asserted-by":"crossref","unstructured":"Pimentel, T., Castro, R., Veloso, A., & Ziviani, N. (2019). Efficient estimation of node representations in large graphs using linear contexts. In 2019 International joint conference on neural networks (IJCNN) (pp. 1\u20138). IEEE.","DOI":"10.1109\/IJCNN.2019.8852262"},{"key":"10.1016\/j.eswa.2021.114913_b0225","doi-asserted-by":"crossref","unstructured":"Powell, J., & Hopkins, M. (2015). 14 - social networks. In J. Powell, M. Hopkins, (Eds.), A Librarian\u2019s guide to graphs, data and the semantic web, chandos information professional series (pp. 111\u2013116). Chandos Publishing.","DOI":"10.1016\/B978-1-84334-753-8.00014-2"},{"key":"10.1016\/j.eswa.2021.114913_b0230","series-title":"Proceedings of the eleventh ACM international conference on web search and data mining","first-page":"459","article-title":"Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec","author":"Qiu","year":"2018"},{"key":"10.1016\/j.eswa.2021.114913_b0235","unstructured":"Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2018). Dynamic graph representation learning via self-attention networks. arXiv preprint arXiv:1812.09430."},{"key":"10.1016\/j.eswa.2021.114913_b0240","unstructured":"Spisiak, J. (2011). Local construction of dominating set. Master\u2019s thesis."},{"issue":"8","key":"10.1016\/j.eswa.2021.114913_b0245","doi-asserted-by":"crossref","first-page":"1919","DOI":"10.3390\/s19081919","article-title":"Minimum connected dominating set algorithms for ad hoc sensor networks","volume":"19","author":"Sun","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.eswa.2021.114913_b0250","doi-asserted-by":"crossref","unstructured":"Taheri, A., Gimpel, K., & Berger-Wolf, T. (2019). Learning to represent the evolution of dynamic graphs with recurrent models. In Companion proceedings of the 2019 world wide web conference (pp. 301\u2013307). ACM.","DOI":"10.1145\/3308560.3316581"},{"key":"10.1016\/j.eswa.2021.114913_b0255","doi-asserted-by":"crossref","unstructured":"Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale information network embedding. In Proceedings of the 24th international conference on world wide web (pp. 1067\u20131077). International World Wide Web Conferences Steering Committee.","DOI":"10.1145\/2736277.2741093"},{"issue":"3","key":"10.1016\/j.eswa.2021.114913_b0260","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/jdwm.2007070101","article-title":"Multi-label classification: An overview","volume":"3","author":"Tsoumakas","year":"2007","journal-title":"International Journal of Data Warehousing and Mining (IJDWM)"},{"key":"10.1016\/j.eswa.2021.114913_b0265","doi-asserted-by":"crossref","unstructured":"Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1225\u20131234). ACM.","DOI":"10.1145\/2939672.2939753"},{"issue":"3","key":"10.1016\/j.eswa.2021.114913_b0270","doi-asserted-by":"crossref","first-page":"1442","DOI":"10.1016\/j.dss.2012.12.020","article-title":"Expertrank: A topic-aware expert finding algorithm for online knowledge communities","volume":"54","author":"Wang","year":"2013","journal-title":"Decision Support Systems"},{"issue":"12","key":"10.1016\/j.eswa.2021.114913_b0275","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1109\/TKDE.2017.2754499","article-title":"Knowledge graph embedding: A survey of approaches and applications","volume":"29","author":"Wang","year":"2017","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2021.114913_b0280","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1145\/3299886","article-title":"Detecting and assessing anomalous evolutionary behaviors of nodes in evolving social networks","volume":"13","author":"Wang","year":"2019","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"issue":"8","key":"10.1016\/j.eswa.2021.114913_b0285","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1109\/TPDS.2006.103","article-title":"Extended dominating set and its applications in ad hoc networks using cooperative communication","volume":"17","author":"Wu","year":"2006","journal-title":"IEEE Transactions on Parallel and Distributed Systems"},{"key":"10.1016\/j.eswa.2021.114913_b0290","doi-asserted-by":"crossref","unstructured":"Yang, C., & Wu, J. (2003). Dominating-set-based searching in peer-to-peer networks. In International conference on grid and cooperative computing (pp. 332\u2013339). Springer.","DOI":"10.1007\/978-3-540-24679-4_67"},{"key":"10.1016\/j.eswa.2021.114913_b0295","unstructured":"Zafarani, R., & Liu, H. (2009). Social computing data repository at asu."},{"key":"10.1016\/j.eswa.2021.114913_b0300","series-title":"Proceedings of the 16th international conference on world wide web","first-page":"221","article-title":"Expertise networks in online communities: structure and algorithms","author":"Zhang","year":"2007"},{"key":"10.1016\/j.eswa.2021.114913_b0305","series-title":"Network representation learning: A survey","author":"Zhang","year":"2018"},{"key":"10.1016\/j.eswa.2021.114913_b0310","series-title":"Proceedings of the twenty-fifth international joint conference on artificial intelligence","first-page":"3000","article-title":"Expert finding for community-based question answering via ranking metric network learning","author":"Zhao","year":"2016"},{"issue":"11","key":"10.1016\/j.eswa.2021.114913_b0315","first-page":"2134","article-title":"High-order proximity preserved embedding for dynamic networks","volume":"30","author":"Zhu","year":"2018","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2021.114913_b0320","doi-asserted-by":"crossref","first-page":"458","DOI":"10.1016\/j.patcog.2019.05.004","article-title":"Joint graph based embedding and feature weighting for image classification","volume":"93","author":"Zhu","year":"2019","journal-title":"Pattern Recognition"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421003547?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421003547?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T03:47:43Z","timestamp":1714535263000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421003547"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9]]},"references-count":64,"alternative-id":["S0957417421003547"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114913","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2021,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ExEm: Expert embedding using dominating set theory with deep learning approaches","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114913","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"114913"}}