{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,15]],"date-time":"2024-08-15T01:34:39Z","timestamp":1723685679502},"reference-count":81,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,7,1]],"date-time":"2021-07-01T00:00:00Z","timestamp":1625097600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2021,7]]},"DOI":"10.1016\/j.eswa.2021.114707","type":"journal-article","created":{"date-parts":[[2021,2,17]],"date-time":"2021-02-17T15:01:58Z","timestamp":1613574118000},"page":"114707","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Classification of severity of trachea stenosis from EEG signals using ordinal decision-tree based algorithms and ensemble-based ordinal and non-ordinal algorithms"],"prefix":"10.1016","volume":"173","author":[{"given":"Gonen","family":"Singer","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4930-3630","authenticated-orcid":false,"given":"Anat","family":"Ratnovsky","sequence":"additional","affiliation":[]},{"given":"Sara","family":"Naftali","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2021.114707_b0005","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.knosys.2015.08.004","article-title":"Application of entropies for automated diagnosis of epilepsy using EEG signals: A review","volume":"88","author":"Acharya","year":"2015","journal-title":"Knowledge-Based Systems"},{"issue":"2","key":"10.1016\/j.eswa.2021.114707_b0010","first-page":"46","article-title":"Spectral analysis of an acoustic respiratory signal with a view to developing an apnoea monitor","volume":"19","author":"Ajmani","year":"1996","journal-title":"Australasian physical & engineering sciences in medicine"},{"key":"10.1016\/j.eswa.2021.114707_b0015","series-title":"Introduction to machine learning","author":"Alpaydin","year":"2014"},{"issue":"2","key":"10.1016\/j.eswa.2021.114707_b0020","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.cmpb.2014.11.002","article-title":"Machine learning algorithms and forced oscillation measurements to categorize the airway obstruction severity in chronic obstructive pulmonary disease","volume":"118","author":"Amaral","year":"2015","journal-title":"Computer methods and programs in biomedicine"},{"key":"10.1016\/j.eswa.2021.114707_b0025","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.cmpb.2017.03.023","article-title":"High-accuracy detection of airway obstruction in asthma using machine learning algorithms and forced oscillation measurements","volume":"144","author":"Amaral","year":"2017","journal-title":"Computer methods and programs in biomedicine"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0030","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s13246-015-0333-x","article-title":"Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques","volume":"38","author":"Amin","year":"2015","journal-title":"Australasian physical & engineering sciences in medicine"},{"key":"10.1016\/j.eswa.2021.114707_b0035","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1016\/j.procs.2019.02.089","article-title":"Using the ensemble of deep neural networks for normal and abnormal situations detection and recognition in the continuous video stream of the security system","volume":"150","author":"Amosov","year":"2019","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.eswa.2021.114707_b0040","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1016\/j.procs.2015.09.175","article-title":"Transformation based score fusion algorithm for multi-modal biometric user authentication through ensemble classification","volume":"61","author":"Assaad","year":"2015","journal-title":"Procedia Computer Science"},{"issue":"12","key":"10.1016\/j.eswa.2021.114707_b0045","doi-asserted-by":"crossref","first-page":"3717","DOI":"10.1007\/s00521-016-2276-x","article-title":"A hybrid method based on time\u2013frequency images for classification of alcohol and control EEG signals","volume":"28","author":"Bajaj","year":"2017","journal-title":"Neural Computing and Applications"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2021.114707_b0050","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1023\/A:1007515423169","article-title":"An empirical comparison of voting classification algorithms: Bagging, boosting, and variants","volume":"36","author":"Bauer","year":"1999","journal-title":"Machine learning"},{"key":"10.1016\/j.eswa.2021.114707_b0055","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: A review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS Journal of Photogrammetry and Remote Sensing"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0060","doi-asserted-by":"crossref","first-page":"6627","DOI":"10.1016\/j.eswa.2008.08.021","article-title":"Adding monotonicity to learning algorithms may impair their accuracy","volume":"36","author":"Ben-David","year":"2009","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0065","doi-asserted-by":"crossref","first-page":"1066","DOI":"10.1109\/JBHI.2018.2845303","article-title":"Sleep apnea detection based on rician modeling of feature variation in multiband EEG signal","volume":"23","author":"Bhattacharjee","year":"2018","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2021.114707_b0070","first-page":"1393","article-title":"Learning to classify ordinal data: The data replication method","volume":"8","author":"Cardoso","year":"2007","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2021.114707_b0075","doi-asserted-by":"crossref","unstructured":"Cardoso, J. S., & Sousa, R. (2011). Measuring the performance of ordinal classification.International Journal of Pattern Recognition and Artificial Intelligence,25(8), 1173-1195.","DOI":"10.1142\/S0218001411009093"},{"issue":"2","key":"10.1016\/j.eswa.2021.114707_b0080","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1113\/jphysiol.1994.sp020063","article-title":"Evidence for bilateral innervation of certain homologous motoneuron pools in man","volume":"475","author":"Carr","year":"1994","journal-title":"The Journal of physiology"},{"issue":"10","key":"10.1016\/j.eswa.2021.114707_b0085","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1001\/archotol.1991.01870220092016","article-title":"A basic model to study acoustic evaluation of airway obstruction","volume":"117","author":"Coleman","year":"1991","journal-title":"Archives of Otolaryngology-Head & Neck Surgery"},{"issue":"2","key":"10.1016\/j.eswa.2021.114707_b0090","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.clinph.2017.10.039","article-title":"The effect of increased intracranial EEG sampling rates in clinical practice","volume":"129","author":"Davis","year":"2018","journal-title":"Clinical Neurophysiology"},{"key":"10.1016\/j.eswa.2021.114707_b0095","doi-asserted-by":"crossref","unstructured":"Destercke, S., & Yang, G. (2014 September). Cautious ordinal classification by binary decomposition. InJoint European Conference on Machine Learning and Knowledge Discovery in Databases(pp. 323-337). Springer, Berlin, Heidelberg.","DOI":"10.1007\/978-3-662-44848-9_21"},{"key":"10.1016\/j.eswa.2021.114707_b0100","doi-asserted-by":"crossref","unstructured":"Dietterich, T. G. (2000 June). Ensemble methods in machine learning. InInternational workshop on multiple classifier systems(pp. 1-15). Springer, Berlin, Heidelberg.","DOI":"10.1007\/3-540-45014-9_1"},{"key":"10.1016\/j.eswa.2021.114707_b0105","series-title":"EEG-based recognition of attention state using wavelet and support vector machine","first-page":"139","author":"Djamal","year":"2016"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0110","doi-asserted-by":"crossref","first-page":"269","DOI":"10.3233\/THC-2001-9304","article-title":"Time-frequency analysis of breathing signals: in vitro airway model","volume":"9","author":"Elad","year":"2001","journal-title":"Technology and Health Care"},{"issue":"5825","key":"10.1016\/j.eswa.2021.114707_b0115","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1136\/bmj.3.5825.503","article-title":"Assessment of upper airways obstruction","volume":"3","author":"Empey","year":"1972","journal-title":"British Medical Journal"},{"key":"10.1016\/j.eswa.2021.114707_b0120","series-title":"A simple approach to ordinal classification","first-page":"145","author":"Frank","year":"2001"},{"key":"10.1016\/j.eswa.2021.114707_b0125","series-title":"Evaluation methods for ordinal classification","first-page":"207","author":"Gaudette","year":"2009"},{"key":"10.1016\/j.eswa.2021.114707_b0130","volume":"Vol. 1","author":"Green","year":"1966"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0135","doi-asserted-by":"crossref","first-page":"506","DOI":"10.1016\/j.eswa.2005.04.011","article-title":"Recurrent neural networks employing Lyapunov exponents for EEG signals classification","volume":"29","author":"G\u00fcler","year":"2005","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.114707_b0140","doi-asserted-by":"crossref","unstructured":"Gutierrez, P. A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., & Hervas-Martinez, C. (2015). Ordinal regression methods: survey and experimental study.IEEE Transactions on Knowledge and Data Engineering,28(1), 127-146.","DOI":"10.1109\/TKDE.2015.2457911"},{"key":"10.1016\/j.eswa.2021.114707_b0145","unstructured":"Han, J., & Kambel, M. (2012). Data Mining: Concepts and Techniques, Mor."},{"key":"10.1016\/j.eswa.2021.114707_b0150","unstructured":"H\u00e9caen, H., & Albert, M. L. (1978).Human neuropsychology. John Wiley & Sons Inc."},{"key":"10.1016\/j.eswa.2021.114707_b0155","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.cmpb.2019.05.019","article-title":"Reviewing ensemble classification methods in breast cancer","volume":"177","author":"Hosni","year":"2019","journal-title":"Computer Methods and Programs in Biomedicine"},{"key":"10.1016\/j.eswa.2021.114707_b0160","doi-asserted-by":"crossref","unstructured":"Jain, P., & Mehta, A. C. (2016). Diseases of central airways: an overview. In Diseases of the Central Airways (pp. 1-69). Humana Press, Cham.","DOI":"10.1007\/978-3-319-29830-6_1"},{"key":"10.1016\/j.eswa.2021.114707_b0165","doi-asserted-by":"crossref","unstructured":"Jiang, S., Mao, H., Ding, Z., & Fu, Y. (2019). Deep Decision Tree Transfer Boosting.IEEE transactions on neural networks and learning systems.","DOI":"10.1109\/TNNLS.2019.2901273"},{"issue":"3\/4","key":"10.1016\/j.eswa.2021.114707_b0170","doi-asserted-by":"crossref","first-page":"324","DOI":"10.2307\/2332613","article-title":"On the method of paired comparisons","volume":"31","author":"Kendall","year":"1940","journal-title":"Biometrika"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0175","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/0002-9343(76)90048-6","article-title":"Diagnosis of obstruction of the upper and central airways","volume":"61","author":"Kryger","year":"1976","journal-title":"The American journal of medicine"},{"issue":"9","key":"10.1016\/j.eswa.2021.114707_b0180","first-page":"2619","article-title":"Epilepsyecosystem. org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG","volume":"141","author":"Kuhlmann","year":"2018","journal-title":"Brain"},{"issue":"7","key":"10.1016\/j.eswa.2021.114707_b0185","first-page":"2960","article-title":"Time-varying system identification using an ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG","volume":"29","author":"Li","year":"2017","journal-title":"IEEE transactions on neural networks and learning systems"},{"key":"10.1016\/j.eswa.2021.114707_b0190","doi-asserted-by":"crossref","unstructured":"Maimon, O., & Rokach, L. (Eds.). (2005). Data mining and knowledge discovery handbook. Springer, Boston, MA.","DOI":"10.1007\/b107408"},{"key":"10.1016\/j.eswa.2021.114707_b0195","article-title":"Pediatric respiratory emergencies: upper airway obstruction and infections","volume":"Chap. 166","author":"Manno","year":"2010"},{"key":"10.1016\/j.eswa.2021.114707_b0200","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.cmpb.2016.03.020","article-title":"Congestive heart failure detection using random forest classifier","volume":"130","author":"Masetic","year":"2016","journal-title":"Computer methods and programs in biomedicine"},{"key":"10.1016\/j.eswa.2021.114707_b0205","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.compbiomed.2018.10.035","article-title":"Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features","volume":"104","author":"Nabi","year":"2019","journal-title":"Computers in biology and medicine"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0210","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1186\/1465-9921-11-9","article-title":"Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography","volume":"11","author":"Noble","year":"2010","journal-title":"Respiratory research"},{"issue":"2","key":"10.1016\/j.eswa.2021.114707_b0215","doi-asserted-by":"crossref","first-page":"2027","DOI":"10.1016\/j.eswa.2007.12.065","article-title":"Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy","volume":"36","author":"Ocak","year":"2009","journal-title":"Expert Systems with Applications"},{"issue":"10","key":"10.1016\/j.eswa.2021.114707_b0220","doi-asserted-by":"crossref","first-page":"13475","DOI":"10.1016\/j.eswa.2011.04.149","article-title":"EEG signals classification using the K-means clustering and a multilayer perceptron neural network model","volume":"38","author":"Orhan","year":"2011","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0225","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1186\/1471-2105-15-223","article-title":"A comparative study of the svm and k-nn machine learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic signals","volume":"15","author":"Palaniappan","year":"2014","journal-title":"BMC bioinformatics"},{"issue":"4","key":"10.1016\/j.eswa.2021.114707_b0230","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1007\/BF02513331","article-title":"Effect of ambient respiratory noise on the measurement of lung sounds","volume":"37","author":"Pasterkamp","year":"1999","journal-title":"Medical & biological engineering & computing"},{"key":"10.1016\/j.eswa.2021.114707_b0235","doi-asserted-by":"crossref","unstructured":"Quinlan, J. R. (1986). Induction of decision trees.Machine learning,1(1), 81-106.","DOI":"10.1007\/BF00116251"},{"key":"10.1016\/j.eswa.2021.114707_b0240","unstructured":"Quinlan, J. R. (1993). C4. 5.Programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA."},{"key":"10.1016\/j.eswa.2021.114707_b0245","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.eswa.2018.06.031","article-title":"Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms","volume":"113","author":"Raghu","year":"2018","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2021.114707_b0250","series-title":"December). Detecting emotion from EEG signals using the emotive epoc device","first-page":"175","author":"Ramirez","year":"2012"},{"key":"10.1016\/j.eswa.2021.114707_b0255","doi-asserted-by":"crossref","unstructured":"Reyzin, L., & Schapire, R. E. (2006, June). How boosting the margin can also boost classifier complexity. InProceedings of the 23rd international conference on Machine learning(pp. 753-760). ACM.","DOI":"10.1145\/1143844.1143939"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0260","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/TNSRE.2015.2441835","article-title":"EMD-based temporal and spectral features for the classification of EEG signals using supervised learning","volume":"24","author":"Riaz","year":"2015","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.eswa.2021.114707_b0265","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.eswa.2018.03.053","article-title":"EEG signal classification using universum support vector machine","volume":"106","author":"Richhariya","year":"2018","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0270","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1049\/htl.2018.5101","article-title":"Automatic detection of sleep apnea events based on inter-band energy ratio obtained from multi-band EEG signal","volume":"6","author":"Saha","year":"2019","journal-title":"Healthcare technology letters"},{"key":"10.1016\/j.eswa.2021.114707_b0275","series-title":"Comparative analysis of decision tree algorithms: ID3, C4. 5 and random forest","first-page":"549","author":"Sathyadevan","year":"2015"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0280","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.dsp.2007.12.004","article-title":"Time\u2013frequency feature representation using energy concentration: An overview of recent advances","volume":"19","author":"Sejdi\u0107","year":"2009","journal-title":"Digital signal processing"},{"issue":"3","key":"10.1016\/j.eswa.2021.114707_b0285","doi-asserted-by":"crossref","first-page":"1680","DOI":"10.1166\/asl.2018.11136","article-title":"Improved boosted decision tree algorithms by adaptive apriori and post-pruning for predicting obstructive sleep apnea","volume":"24","author":"Sim","year":"2018","journal-title":"Advanced Science Letters"},{"issue":"8","key":"10.1016\/j.eswa.2021.114707_b0290","doi-asserted-by":"crossref","first-page":"821","DOI":"10.3390\/e22080821","article-title":"An objective-based entropy approach for interpretable decision tree models in support of human resource management: The case of absenteeism at work","volume":"22","author":"Singer","year":"2020","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2021.114707_b0295","doi-asserted-by":"crossref","unstructured":"Singer, G., & Golan, M. (2019a). Applying data mining algorithms to encourage mental health disclosure in the workplace. International Journal of Business Information Systems. In press.","DOI":"10.1504\/IJBIS.2020.10019486"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0300","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1186\/s40163-019-0109-9","article-title":"Identification of subgroups of terror attacks with shared characteristics for the purpose of preventing mass-casualty attacks: A data-mining approach","volume":"8","author":"Singer","year":"2019","journal-title":"Crime Science"},{"issue":"8","key":"10.1016\/j.eswa.2021.114707_b0305","doi-asserted-by":"crossref","first-page":"871","DOI":"10.3390\/e22080871","article-title":"Ordinal decision-tree-based ensemble approaches: The case of controlling the daily local growth rate of the COVID-19 Epidemic","volume":"22","author":"Singer","year":"2020","journal-title":"Entropy"},{"key":"10.1016\/j.eswa.2021.114707_b0310","doi-asserted-by":"crossref","unstructured":"Singer, G., Anuar Or., R., & Ben-Gal, I. (2020). A Weighted Information-Gain Measure for Ordinal Classification Trees. Expert systems with applications, accepted for publication.","DOI":"10.1016\/j.eswa.2020.113375"},{"key":"10.1016\/j.eswa.2021.114707_b0315","first-page":"1","article-title":"Evaluation of the effect of learning disabilities and accommodations on the prediction of the stability of academic behaviour of undergraduate engineering students using decision trees","author":"Singer","year":"2019","journal-title":"European Journal of Engineering Education"},{"issue":"4","key":"10.1016\/j.eswa.2021.114707_b0320","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1016\/j.ipm.2009.03.002","article-title":"A systematic analysis of performance measures for classification tasks","volume":"45","author":"Sokolova","year":"2009","journal-title":"Information processing & management"},{"issue":"1","key":"10.1016\/j.eswa.2021.114707_b0325","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1007\/s00521-017-2976-x","article-title":"A novel logistic-NARX model as a classifier for dynamic binary classification","volume":"31","author":"Solares","year":"2019","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.eswa.2021.114707_b0330","doi-asserted-by":"crossref","unstructured":"Sprigings, D. C., & Chambers, J. B. (Eds.). (2017).Acute medicine: a practical guide to the management of medical emergencies. John Wiley & Sons.","DOI":"10.1002\/9781119389613"},{"key":"10.1016\/j.eswa.2021.114707_b0335","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.jneumeth.2016.10.008","article-title":"Interpretable deep neural networks for single-trial EEG classification","volume":"274","author":"Sturm","year":"2016","journal-title":"Journal of neuroscience methods"},{"issue":"12","key":"10.1016\/j.eswa.2021.114707_b0340","doi-asserted-by":"crossref","first-page":"8659","DOI":"10.1016\/j.eswa.2010.06.065","article-title":"EEG signal classification using PCA, ICA, LDA and support vector machines","volume":"37","author":"Subasi","year":"2010","journal-title":"Expert systems with applications"},{"key":"10.1016\/j.eswa.2021.114707_b0345","series-title":"September). Effective voting of heterogeneous classifiers","first-page":"465","author":"Tsoumakas","year":"2004"},{"issue":"8","key":"10.1016\/j.eswa.2021.114707_b0350","doi-asserted-by":"crossref","first-page":"944","DOI":"10.1016\/j.rmed.2015.05.001","article-title":"Prognosis of new-onset asthma diagnosed at adult age","volume":"109","author":"Tuomisto","year":"2015","journal-title":"Respiratory medicine"},{"key":"10.1016\/j.eswa.2021.114707_b0355","doi-asserted-by":"crossref","first-page":"858","DOI":"10.1016\/j.asoc.2017.01.042","article-title":"RULEM: A novel heuristic rule learning approach for ordinal classification with monotonicity constraints","volume":"60","author":"Verbeke","year":"2017","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.eswa.2021.114707_b0360","series-title":"September). Avoiding boosting overfitting by removing confusing samples","first-page":"430","author":"Vezhnevets","year":"2007"},{"issue":"4","key":"10.1016\/j.eswa.2021.114707_b0365","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1111\/j.1365-2648.2009.05238.x","article-title":"Self-management and symptom monitoring among older adults with chronic obstructive pulmonary disease","volume":"66","author":"Warwick","year":"2010","journal-title":"Journal of advanced nursing"},{"key":"10.1016\/j.eswa.2021.114707_b0370","doi-asserted-by":"crossref","DOI":"10.7717\/peerj.9713","article-title":"A validation of Emotiv EPOC Flex saline for EEG and ERP research","volume":"8","author":"Williams","year":"2020","journal-title":"PeerJ"},{"key":"10.1016\/j.eswa.2021.114707_b0375","doi-asserted-by":"crossref","unstructured":"Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Philip, S.Y., & Zhou, Z. H. (2008). Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37.","DOI":"10.1007\/s10115-007-0114-2"},{"key":"10.1016\/j.eswa.2021.114707_b0380","unstructured":"Xue, J. Z., Zhang, H., Zheng, C. X., & Yan, X. G. (2003, November). Wavelet packet transform for feature extraction of EEG during mental tasks. InProceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 03EX693)(Vol. 1, pp. 360-363). IEEE."},{"key":"10.1016\/j.eswa.2021.114707_b0385","doi-asserted-by":"crossref","unstructured":"Y\u0131ld\u0131r\u0131m, P., Birant, U. K., & Birant, D. (2019). EBOC: Ensemble-Based Ordinal Classification in Transportation.Journal of Advanced Transportation,2019.","DOI":"10.1155\/2019\/7482138"},{"key":"10.1016\/j.eswa.2021.114707_b0390","doi-asserted-by":"crossref","unstructured":"Yuan, Y., Xun, G., Jia, K., & Zhang, A. (2017, August). A multi-view deep learning method for epileptic seizure detection using short-time fourier transform. In Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp. 213-222).","DOI":"10.1145\/3107411.3107419"},{"key":"10.1016\/j.eswa.2021.114707_b0395","doi-asserted-by":"crossref","DOI":"10.1016\/j.applthermaleng.2019.114516","article-title":"Novel application of multi-model ensemble learning for fault diagnosis in refrigeration systems","volume":"164","author":"Zhang","year":"2020","journal-title":"Applied Thermal Engineering"},{"key":"10.1016\/j.eswa.2021.114707_b0400","doi-asserted-by":"crossref","unstructured":"Zhou, Z. H. (2009). Ensemble Learning. In S.Z. Li, & A.K. Jain (Eds.), Encyclopedia of Biometrics (pp. 270-273). Springer, Boston, MA.","DOI":"10.1007\/978-0-387-73003-5_293"},{"issue":"1\u20132","key":"10.1016\/j.eswa.2021.114707_b0405","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S0004-3702(02)00190-X","article-title":"Ensembling neural networks: many could be better than all","volume":"137","author":"Zhou","year":"2002","journal-title":"Artificial intelligence"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421001482?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417421001482?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T03:41:04Z","timestamp":1714534864000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417421001482"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7]]},"references-count":81,"alternative-id":["S0957417421001482"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114707","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2021,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Classification of severity of trachea stenosis from EEG signals using ordinal decision-tree based algorithms and ensemble-based ordinal and non-ordinal algorithms","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2021.114707","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"114707"}}