{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,14]],"date-time":"2024-07-14T11:37:46Z","timestamp":1720957066590},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.eswa.2020.113286","type":"journal-article","created":{"date-parts":[[2020,2,13]],"date-time":"2020-02-13T07:32:58Z","timestamp":1581579178000},"page":"113286","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems"],"prefix":"10.1016","volume":"149","author":[{"given":"Saeed","family":"Pirmoradi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2498-9653","authenticated-orcid":false,"given":"Mohammad","family":"Teshnehlab","sequence":"additional","affiliation":[]},{"given":"Nosratollah","family":"Zarghami","sequence":"additional","affiliation":[]},{"given":"Arash","family":"Sharifi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2020.113286_bib0001","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.eswa.2015.10.015","article-title":"Breast cancer classification using deep belief networks","volume":"46","author":"Abdel-Zaher","year":"2016","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2020.113286_bib0002","first-page":"141","article-title":"Designing stable neural identifier based on Lyapunov method","volume":"3","author":"Alibakhshi","year":"2015","journal-title":"Journal of AI and Data Mining"},{"issue":"1","key":"10.1016\/j.eswa.2020.113286_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for AI","volume":"2","author":"Bengio","year":"2009","journal-title":"Foundations and trends\u00ae in Machine Learning"},{"issue":"8","key":"10.1016\/j.eswa.2020.113286_bib0004","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation Learning: A Review and New Perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2020.113286_bib0005","doi-asserted-by":"crossref","unstructured":"Bruzzone, L., Prieto, D.F., J. I. t. o. g., & sensing, r. (1999). A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. 37 (2), 1179\u20131184","DOI":"10.1109\/36.752239"},{"key":"10.1016\/j.eswa.2020.113286_bib0006","article-title":"Generalized Correntropy based deep learning in presence of non-Gaussian noises","author":"Chen","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2020.113286_bib0007","doi-asserted-by":"crossref","DOI":"10.1162\/NECO_a_00848","article-title":"An infinite restricted Boltzmann machine","author":"C\u00f4t\u00e9","year":"2016","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2020.113286_bib0008","article-title":"The cascade-correlation learning architecture","author":"Fahlman","year":"1990","journal-title":"Paper presented at the Advances in neural information processing systems"},{"issue":"3","key":"10.1016\/j.eswa.2020.113286_bib0009","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1109\/TSMCB.2003.810911","article-title":"Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance","volume":"33","author":"Fu","year":"2003","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)"},{"key":"10.1016\/j.eswa.2020.113286_bib0010","volume":"1","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.eswa.2020.113286_bib0011","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.neucom.2015.09.116","article-title":"Deep learning for visual understanding: A review","volume":"187","author":"Guo","year":"2016","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.eswa.2020.113286_bib0012","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1016\/j.tics.2007.09.004","article-title":"Learning multiple layers of representation","volume":"11","author":"Hinton","year":"2007","journal-title":"Trends in Cognitive Sciences"},{"issue":"5786","key":"10.1016\/j.eswa.2020.113286_bib0013","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"key":"10.1016\/j.eswa.2020.113286_bib0014","series-title":"Paper presented at the advances in neural information processing systems","article-title":"A better way to pretrain deep boltzmann machines","author":"Hinton","year":"2012"},{"issue":"1","key":"10.1016\/j.eswa.2020.113286_bib0015","first-page":"926","article-title":"A practical guide to training restricted Boltzmann machines","volume":"9","author":"Hinton","year":"2010","journal-title":"Momentum"},{"key":"10.1016\/j.eswa.2020.113286_bib0016","series-title":"Advanced techniques in knowledge discovery and data mining","first-page":"177","article-title":"Knowledge discovery and data mining in medicine","author":"Ichimura","year":"2005"},{"key":"10.1016\/j.eswa.2020.113286_bib0017","doi-asserted-by":"crossref","unstructured":"Ichimura, T., Oeda, S., Suka, M., Yoshida, K.J.N.C., & Applications. (2005). A learning method of immune multi-agent neural networks. 14 (2), 132\u2013148","DOI":"10.1007\/s00521-004-0448-6"},{"key":"10.1016\/j.eswa.2020.113286_bib0018","doi-asserted-by":"crossref","unstructured":"Ichimura, T., Tazaki, E., & Yoshida, K.J. I. j. o. b.-m. c. (1995). Extraction of fuzzy rules using neural networks with structure level adaptation\u2014verification to the diagnosis of hepatobiliary disorders. 40 (2), 139\u2013146","DOI":"10.1016\/0020-7101(95)01138-5"},{"key":"10.1016\/j.eswa.2020.113286_bib0019","series-title":"Knowledge-based intelligent systems for healthcare","author":"Ichimura","year":"2004"},{"key":"10.1016\/j.eswa.2020.113286_bib0020","series-title":"Paper presented at the Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.eswa.2020.113286_bib0021","doi-asserted-by":"crossref","unstructured":"Islam, M.M., Sattar, M.A., Amin, M.F., Yao, X., Murase, K.J. I. T. o. S., Man, , & Cybernetics, P.B. (2009). A new adaptive merging and growing algorithm for designing artificial neural networks. 39 (3), 705\u2013722.","DOI":"10.1109\/TSMCB.2008.2008724"},{"key":"10.1016\/j.eswa.2020.113286_bib0022","unstructured":"Keyvanrad, M.A., & Homayounpour, M.M. (2014). A brief survey on deep belief networks and introducing a new object oriented toolbox (DeeBNet). arXiv:1408.3264."},{"issue":"05","key":"10.1016\/j.eswa.2020.113286_bib0023","doi-asserted-by":"crossref","DOI":"10.1142\/S0218001415510064","article-title":"Deep belief network training improvement using elite samples minimizing free energy","volume":"29","author":"Keyvanrad","year":"2015","journal-title":"International Journal of Pattern Recognition and Artificial Intelligence"},{"key":"10.1016\/j.eswa.2020.113286_bib0024","unstructured":"Kristiansen, G., & Gonzalvo, X.J. a. p. a. (2017). EnergyNet: energy-based adaptive structural learning of artificial neural network architectures"},{"key":"10.1016\/j.eswa.2020.113286_bib0025","series-title":"Paper presented at the Proceedings of the 24th international conference on machine learning","article-title":"An empirical evaluation of deep architectures on problems with many factors of variation","author":"Larochelle","year":"2007"},{"key":"10.1016\/j.eswa.2020.113286_bib0026","series-title":"Elementary linear algebra","author":"Larson","year":"2012"},{"key":"10.1016\/j.eswa.2020.113286_bib0027","series-title":"Paper presented at the ACM SIGMETRICS performance evaluation review","article-title":"Internet traffic classification using bayesian analysis techniques","author":"Moore","year":"2005"},{"key":"10.1016\/j.eswa.2020.113286_bib0028","unstructured":"Moore, A., Zuev, D., & Crogan, M. (2013). Discriminators for use in flow-based classification (1470\u20135559). Retrieved from"},{"key":"10.1016\/j.eswa.2020.113286_bib0029","series-title":"Paper presented at the Proceedings of the 28th international conference on machine learning (ICML-11)","article-title":"Contractive auto-encoders: Explicit invariance during feature extraction","author":"Rifai","year":"2011"},{"key":"10.1016\/j.eswa.2020.113286_bib0030","series-title":"Paper presented at the Artificial Intelligence and Statistics","article-title":"Deep boltzmann machines","author":"Salakhutdinov","year":"2009"},{"issue":"2","key":"10.1016\/j.eswa.2020.113286_bib0031","doi-asserted-by":"crossref","first-page":"7046","DOI":"10.3182\/20080706-5-KR-1001.01194","article-title":"Stable learning algorithm approaches for ANFIS as an identifier","volume":"41","author":"Shoorehdeli","year":"2008","journal-title":"IFAC Proceedings Volumes"},{"issue":"11","key":"10.1016\/j.eswa.2020.113286_bib0032","doi-asserted-by":"crossref","first-page":"3058","DOI":"10.1109\/78.726818","article-title":"ECG analysis using nonlinear PCA neural networks for ischemia detection","volume":"46","author":"Stamkopoulos","year":"1998","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.eswa.2020.113286_bib0033","series-title":"Introduction to linear algebra","author":"Strang","year":"2016"},{"key":"10.1016\/j.eswa.2020.113286_bib0034","series-title":"Paper presented at the 2012 IEEE conference on computer cision and pattern recognition","article-title":"Robust Boltzmann machines for recognition and denoising","author":"Tang","year":"2012"},{"key":"10.1016\/j.eswa.2020.113286_bib0035","series-title":"Paper presented at the proceedings of the 25th international conference on machine learning","article-title":"Extracting and composing robust features with denoising autoencoders","author":"Vincent","year":"2008"},{"key":"10.1016\/j.eswa.2020.113286_bib0036","series-title":"Data mining with computational intelligence","author":"Wang","year":"2006"},{"issue":"7-9","key":"10.1016\/j.eswa.2020.113286_bib0037","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1016\/j.neucom.2005.04.010","article-title":"Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure","volume":"69","author":"Zeng","year":"2006","journal-title":"Neurocomputing"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417420301111?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417420301111?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,4,12]],"date-time":"2020-04-12T07:46:10Z","timestamp":1586677570000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417420301111"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":37,"alternative-id":["S0957417420301111"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2020.113286","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The Self-Organizing Restricted Boltzmann Machine for Deep Representation with the Application on Classification Problems","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2020.113286","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"113286"}}