{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T08:51:38Z","timestamp":1726476698415},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.eswa.2019.06.038","type":"journal-article","created":{"date-parts":[[2019,6,19]],"date-time":"2019-06-19T03:49:01Z","timestamp":1560916141000},"page":"353-364","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":62,"special_numbering":"C","title":["Diagnosis and monitoring of Alzheimer's patients using classical and deep learning techniques"],"prefix":"10.1016","volume":"136","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7351-9749","authenticated-orcid":false,"given":"M.","family":"Raza","sequence":"first","affiliation":[]},{"given":"M.","family":"Awais","sequence":"additional","affiliation":[]},{"given":"W.","family":"Ellahi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9500-3970","authenticated-orcid":false,"given":"N.","family":"Aslam","sequence":"additional","affiliation":[]},{"given":"H.X.","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"H.","family":"Le-Minh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2019.06.038_bib0001","series-title":"Proceedings of international conference on European symposium on artificial neural networks (ESANN)","first-page":"437","article-title":"A public domain dataset for human activity recognition using smartphones","author":"Anguita","year":"2013"},{"issue":"2B","key":"10.1016\/j.eswa.2019.06.038_bib0002","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1590\/S0004-282X2008000300007","article-title":"Role of physical activity on the maintenance of cognition and activities of daily living in elderly with Alzheimer's disease","volume":"66","author":"Arcoverde","year":"2008","journal-title":"Arquivos de neuro-psiquiatria"},{"key":"10.1016\/j.eswa.2019.06.038_bib0003","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.jalz.2017.02.001","article-title":"Alzheimer's disease facts and figures","volume":"13","author":"Association","year":"2017","journal-title":"Alzheimer's Dement"},{"key":"10.1016\/j.eswa.2019.06.038_bib0004","article-title":"Physical activity classification for elderly people in free living conditions","author":"Awais","year":"2018","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"issue":"12","key":"10.1016\/j.eswa.2019.06.038_bib0005","doi-asserted-by":"crossref","first-page":"2105","DOI":"10.3390\/s16122105","article-title":"Performance evaluation of state of the art systems for physical activity classification of older subjects using inertial sensors in a real life scenario: A benchmark study","volume":"16","author":"Awais","year":"2016","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.eswa.2019.06.038_bib0006","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1088\/0967-3334\/37\/3\/442","article-title":"Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs)","volume":"37","author":"Ayachi","year":"2016","journal-title":"Physiological Measurement"},{"issue":"9","key":"10.1016\/j.eswa.2019.06.038_bib0007","article-title":"A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults","volume":"15","author":"Beckett","year":"2015","journal-title":"BMC Geriatrics"},{"issue":"5","key":"10.1016\/j.eswa.2019.06.038_bib0008","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1016\/j.eswa.2012.09.003","article-title":"Integrating discretization and association rule-based classification for Alzheimer's disease diagnosis","volume":"40","author":"Chaves","year":"2013","journal-title":"Expert Systems with Applications"},{"issue":"1255","key":"10.1016\/j.eswa.2019.06.038_bib0009","article-title":"Validity of the global physical activity questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour","volume":"14","author":"Cleland","year":"2014","journal-title":"BMC Public Health"},{"issue":"4","key":"10.1016\/j.eswa.2019.06.038_bib0010","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.neucli.2017.03.005","article-title":"Physical activity limits the effects of age and Alzheimer's disease on postural control","volume":"47","author":"Debove","year":"2017","journal-title":"Neurophysiologie Clinique\/Clinical Neurophysiology"},{"issue":"5","key":"10.1016\/j.eswa.2019.06.038_bib0011","first-page":"1722","article-title":"Classification of brain mr images using texture feature extraction","volume":"5","author":"ER","year":"2017","journal-title":"International Journal of Computer Science and Engineering"},{"key":"10.1016\/j.eswa.2019.06.038_bib0012","unstructured":"World Health Organization (WHO). (2015). Factsheets on health-enhancing physical activity in the 28 European Union member states of the WHO European region. Retrieved fromhttp:\/\/ec.europa.eu\/sport\/library\/factsheets\/eu-wide-overview-methods.pdf"},{"issue":"1","key":"10.1016\/j.eswa.2019.06.038_bib0013","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1159\/000357472","article-title":"Postural stability analysis with inertial measurement units in Alzheimer's disease","volume":"4","author":"Gago","year":"2014","journal-title":"Dementia and Geriatric Cognitive Disorders Extra"},{"issue":"2","key":"10.1016\/j.eswa.2019.06.038_bib0014","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1111\/j.1447-0594.2012.00899.x","article-title":"Effects of resistance training on the performance of activities of daily living in patients with Alzheimer's disease","volume":"13","author":"Garuffi","year":"2013","journal-title":"Geriatrics & Gerontology International"},{"key":"10.1016\/j.eswa.2019.06.038_bib0015","first-page":"987","article-title":"Natural image bases to represent neuroimaging data","author":"Gupta","year":"2013","journal-title":"International Conference on Machine Learning"},{"issue":"6","key":"10.1016\/j.eswa.2019.06.038_bib0016","doi-asserted-by":"crossref","first-page":"1822","DOI":"10.1109\/JBHI.2014.2325413","article-title":"Gait and balance analysis for patients with Alzheimer's disease using an inertial-sensor-based wearable instrument","volume":"18","author":"Hsu","year":"2014","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.eswa.2019.06.038_bib0017","article-title":"World Alzheimer report. 2010. The global economic impact of dementia","author":"Wymo","year":"2010","journal-title":"Alzheimer's Disease International"},{"issue":"4","key":"10.1016\/j.eswa.2019.06.038_bib0018","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1002\/jmri.21049","article-title":"The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods","volume":"27","author":"Jack","year":"2008","journal-title":"Journal of Magnetic Resonance Imaging"},{"key":"10.1016\/j.eswa.2019.06.038_bib0019","series-title":"Proceedings of neural information processing systems conference (NIPS)","first-page":"1","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"issue":"2","key":"10.1016\/j.eswa.2019.06.038_bib0020","doi-asserted-by":"crossref","first-page":"73","DOI":"10.7326\/0003-4819-144-2-200601170-00004","article-title":"Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older","volume":"144","author":"Larson","year":"2006","journal-title":"Annals of Internal Medicine"},{"issue":"1","key":"10.1016\/j.eswa.2019.06.038_bib0021","doi-asserted-by":"crossref","first-page":"321","DOI":"10.3233\/JAD-160754","article-title":"Alzheimer's disease severity is not significantly associated with short sleep: Survey by actigraphy on 208 mild and moderate Alzheimer's disease patients","volume":"55","author":"Leger","year":"2017","journal-title":"Journal of Alzheimer's Disease"},{"issue":"10","key":"10.1016\/j.eswa.2019.06.038_bib0022","doi-asserted-by":"crossref","first-page":"e75196","DOI":"10.1371\/journal.pone.0075196","article-title":"Hierarchical, multi-sensor based classification of daily life activities: Comparison with state-of-the-art algorithms using a benchmark dataset","volume":"8","author":"Leutheuser","year":"2013","journal-title":"PloS one"},{"key":"10.1016\/j.eswa.2019.06.038_bib0023","series-title":"IEEE International Symposium on Biomedical Imaging (ISBI)","first-page":"677","article-title":"Early diagnosis of Alzheimer's disease with deep learning","author":"Liu","year":"2014"},{"issue":"8","key":"10.1016\/j.eswa.2019.06.038_bib0024","doi-asserted-by":"crossref","first-page":"10701","DOI":"10.1007\/s11042-015-3188-y","article-title":"Towards unsupervised physical activity recognition using smartphone accelerometers","volume":"76","author":"Lu","year":"2017","journal-title":"Multimedia Tools and Applications"},{"issue":"12","key":"10.1016\/j.eswa.2019.06.038_bib0025","doi-asserted-by":"crossref","first-page":"2677","DOI":"10.1162\/jocn.2009.21407","article-title":"Open access series of imaging studies: Longitudinal MRI data in nondemented and demented older adults","volume":"22","author":"Marcus","year":"2010","journal-title":"Journal of Cognitive Neuroscience"},{"issue":"10","key":"10.1016\/j.eswa.2019.06.038_bib0026","doi-asserted-by":"crossref","first-page":"9676","DOI":"10.1016\/j.eswa.2012.02.153","article-title":"Computer aided diagnosis tool for Alzheimer's disease based on Mann\u2013Whitney\u2013Wilcoxon U-test","volume":"39","author":"Mart\u00ednez-Murcia","year":"2012","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.eswa.2019.06.038_bib0027","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0170547","article-title":"Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial","volume":"12","author":"Morris","year":"2017","journal-title":"PloS one"},{"issue":"1","key":"10.1016\/j.eswa.2019.06.038_bib0028","doi-asserted-by":"crossref","first-page":"115","DOI":"10.3390\/s16010115","article-title":"Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition","volume":"16","author":"Ord\u00f3\u00f1ez","year":"2016","journal-title":"Sensors"},{"issue":"3","key":"10.1016\/j.eswa.2019.06.038_bib0029","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1111\/jgs.15241","article-title":"Can exercise improve cognitive symptoms of Alzheimer's disease?","volume":"66","author":"Panza","year":"2018","journal-title":"Journal of the American Geriatrics Society"},{"key":"10.1016\/j.eswa.2019.06.038_bib0030","article-title":"Predicting Alzheimer's disease: A neuroimaging study with 3D convolutional neural networks","author":"Payan","year":"2015","journal-title":"Computing Research Repository"},{"key":"10.1016\/j.eswa.2019.06.038_bib0031","unstructured":"Prince, M., Albanese, E., Guerchet, M., & Prina, M. (2014). Dementia and risk reduction: An analysis of protective and modifiable factors. World Alzheimer Report, 66\u201383."},{"key":"10.1016\/j.eswa.2019.06.038_bib0032","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.eswa.2016.04.029","article-title":"Laplace Beltrami eigen value based classification of normal and Alzheimer MR images using parametric and non-parametric classifiers","volume":"59","author":"Ramaniharan","year":"2016","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2019.06.038_bib0033","series-title":"10th International Conference on Natural Computation (ICNC)","first-page":"681","article-title":"Human activity recognition using smartphone sensors with two-stage continuous hidden Markov models","author":"Ronao","year":"2014"},{"issue":"5","key":"10.1016\/j.eswa.2019.06.038_bib0034","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1097\/JGP.0b013e3181eb00a9","article-title":"Physical activity and Alzheimer disease course","volume":"19","author":"Scarmeas","year":"2011","journal-title":"The American Journal of Geriatric Psychiatry"},{"issue":"6","key":"10.1016\/j.eswa.2019.06.038_bib0035","first-page":"733","article-title":"Physical activity and Alzheimer's disease: A systematic review","volume":"72","author":"Stephen","year":"2017","journal-title":"Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences"},{"issue":"3","key":"10.1016\/j.eswa.2019.06.038_bib0036","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1109\/TST.2014.6838194","article-title":"Activity recognition with smartphone sensors","volume":"19","author":"Su","year":"2014","journal-title":"Tsinghua Science and Technology"},{"key":"10.1016\/j.eswa.2019.06.038_bib0037","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1136\/bjsports-2014-093546","article-title":"Evolution of accelerometer methods for physical activity research","volume":"48","author":"Troiano","year":"2014","journal-title":"British Journal of Sports Medicine"},{"key":"10.1016\/j.eswa.2019.06.038_bib0038","series-title":"IEEE conference on Technologies and Applications of Artificial Intelligence (TAAI)","first-page":"128","article-title":"Inertial-sensor-based balance analysis system for patients with Alzheimer's disease","author":"Wang","year":"2013"},{"year":"2016","series-title":"Data mining: Practical machine learning tools and techniques with java implementations","author":"Witten","key":"10.1016\/j.eswa.2019.06.038_bib0039"},{"key":"10.1016\/j.eswa.2019.06.038_bib0040","doi-asserted-by":"crossref","first-page":"5262","DOI":"10.1109\/ACCESS.2017.2684913","article-title":"Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering","volume":"5","author":"Zdravevski","year":"2017","journal-title":"IEEE Access : Practical Innovations, Open Solutions"},{"issue":"12","key":"10.1016\/j.eswa.2019.06.038_bib0042","doi-asserted-by":"crossref","first-page":"2524","DOI":"10.1109\/TMI.2016.2582386","article-title":"Detecting anatomical landmarks for fast Alzheimer's disease diagnosis","volume":"35","author":"Zhang","year":"2016","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.eswa.2019.06.038_bib0043","doi-asserted-by":"crossref","first-page":"66","DOI":"10.3389\/fncom.2015.00066","article-title":"Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning","volume":"9","author":"Zhang","year":"2015","journal-title":"Frontiers in Computational Neuroscience"},{"key":"10.1016\/j.eswa.2019.06.038_bib0044","doi-asserted-by":"crossref","first-page":"e1251","DOI":"10.7717\/peerj.1251","article-title":"Detection of Alzheimer's disease by displacement field and machine learning","volume":"3","author":"Zhang","year":"2015","journal-title":"PeerJ"},{"year":"2016","series-title":"Advancing feature selection research-ASU feature selection repository","author":"Zhao","key":"10.1016\/j.eswa.2019.06.038_bib0045"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417419304385?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417419304385?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,8]],"date-time":"2019-08-08T06:34:50Z","timestamp":1565246090000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417419304385"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":44,"alternative-id":["S0957417419304385"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2019.06.038","relation":{},"ISSN":["0957-4174"],"issn-type":[{"type":"print","value":"0957-4174"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Diagnosis and monitoring of Alzheimer's patients using classical and deep learning techniques","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2019.06.038","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}