{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T12:39:14Z","timestamp":1722515954119},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,12,1]],"date-time":"2017-12-01T00:00:00Z","timestamp":1512086400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1016\/j.eswa.2017.06.026","type":"journal-article","created":{"date-parts":[[2017,6,19]],"date-time":"2017-06-19T17:16:37Z","timestamp":1497892597000},"page":"45-57","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Metabolic pathway synthesis based on predicting compound transformable pairs by using neural classifiers with imbalanced data handling"],"prefix":"10.1016","volume":"88","author":[{"given":"Sasiporn","family":"Tongman","sequence":"first","affiliation":[]},{"given":"Suchart","family":"Chanama","sequence":"additional","affiliation":[]},{"given":"Manee","family":"Chanama","sequence":"additional","affiliation":[]},{"given":"Kitiporn","family":"Plaimas","sequence":"additional","affiliation":[]},{"given":"Chidchanok","family":"Lursinsap","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.06.026_bib0001","first-page":"255","article-title":"KEEL data-mining software tool: Data set repository integration of algorithms and experimental analysis framework","volume":"17","author":"Alcal\u00e1-Fdez","year":"2011","journal-title":"Journal of Multiple-Valued Logic and Soft Computing"},{"issue":"suppl 1","key":"10.1016\/j.eswa.2017.06.026_bib0002","doi-asserted-by":"crossref","first-page":"D115","DOI":"10.1093\/nar\/gkh131","article-title":"Uniprot: The universal protein knowledgebase","volume":"32","author":"Apweiler","year":"2004","journal-title":"Nucleic Acids Research"},{"issue":"suppl 1","key":"10.1016\/j.eswa.2017.06.026_bib0003","doi-asserted-by":"crossref","first-page":"D511","DOI":"10.1093\/nar\/gkl972","article-title":"BRENDA, AMENDA And FRENDA: The enzyme information system in 2007","volume":"35","author":"Barthelmes","year":"2007","journal-title":"Nucleic Acids Research"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0004","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1145\/1007730.1007735","article-title":"A study of the behavior of several methods for balancing machine learning training data","volume":"6","author":"Batista","year":"2004","journal-title":"SIGKDD Explorations Newsletter"},{"issue":"5","key":"10.1016\/j.eswa.2017.06.026_bib0005","doi-asserted-by":"crossref","first-page":"1653","DOI":"10.1016\/j.patcog.2014.10.032","article-title":"Classifying imbalanced data sets using similarity based hierarchical decomposition","volume":"48","author":"Beyan","year":"2015","journal-title":"Pattern Recognition"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-11-523","article-title":"Class prediction for high-dimensional class-imbalanced data","volume":"11","author":"Blagus","year":"2010","journal-title":"BMC Bioinformatics"},{"key":"10.1016\/j.eswa.2017.06.026_bib0007","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1016\/j.neucom.2003.10.007","article-title":"Biological data mining with neural networks: implementation and application of a flexible decision tree extraction algorithm to genomic problem domains","volume":"57","author":"Browne","year":"2004","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.06.026_bib0008","series-title":"Proceedings of the 13th Pacific-Asia conference on advances in knowledge discovery and data mining (PAKDD \u201909)","first-page":"475","article-title":"Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced Problem","author":"Bunkhumpornpat","year":"2009"},{"issue":"3","key":"10.1016\/j.eswa.2017.06.026_bib0009","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1007\/s10489-011-0287-y","article-title":"DBSMOTE: Density-based synthetic minority over-sampling technique","volume":"36","author":"Bunkhumpornpat","year":"2012","journal-title":"Applied Intelligence"},{"key":"10.1016\/j.eswa.2017.06.026_bib0010","series-title":"Data mining and knowledge discovery handbook","first-page":"853","article-title":"Data mining for imbalanced datasets: An overview","author":"Chawla","year":"2005"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0011","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: Synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"Journal of Artificial Intelligence Research"},{"issue":"10","key":"10.1016\/j.eswa.2017.06.026_bib0012","doi-asserted-by":"crossref","first-page":"1624","DOI":"10.1109\/TNN.2010.2066988","article-title":"RAMOBoost: Ranked minority oversampling in boosting","volume":"21","author":"Chen","year":"2010","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0013","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1038\/nrc2294","article-title":"The properties of high-dimensional data spaces: implications for exploring gene and protein expression data","volume":"8","author":"Clarke","year":"2008","journal-title":"Nature Reviews Cancer"},{"issue":"3","key":"10.1016\/j.eswa.2017.06.026_bib0014","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"issue":"10","key":"10.1016\/j.eswa.2017.06.026_bib0015","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.1016\/j.patcog.2005.03.024","article-title":"Classification methodologies of multilayer perceptrons with sigmoid activation functions","volume":"38","author":"Daqi","year":"2005","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2017.06.026_bib0016","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"Journal of Machine Learning Research"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0017","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1111\/j.1574-6976.2008.00146.x","article-title":"Genome-scale models of bacterial metabolism: reconstruction and applications","volume":"33","author":"Durot","year":"2009","journal-title":"FEMS Microbiology Reviews"},{"key":"10.1016\/j.eswa.2017.06.026_bib0018","series-title":"Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval(sigir \u201907)","first-page":"823","article-title":"Active learning for class imbalance problem","author":"Ertekin","year":"2007"},{"key":"10.1016\/j.eswa.2017.06.026_bib0019","series-title":"Proceedings of the 9th international conference on neural information processing (ICONIP\u201902)","first-page":"1016","article-title":"Training RBF neural networks on unbalanced data","volume":"2","author":"Fu","year":"2002"},{"issue":"4","key":"10.1016\/j.eswa.2017.06.026_bib0020","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1109\/TSMCC.2011.2161285","article-title":"A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches","volume":"42","author":"Galar","year":"2012","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics, Part C"},{"issue":"12","key":"10.1016\/j.eswa.2017.06.026_bib0021","doi-asserted-by":"crossref","first-page":"3460","DOI":"10.1016\/j.patcog.2013.05.006","article-title":"Eusboost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling","volume":"46","author":"Galar","year":"2013","journal-title":"Pattern Recognition"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0022","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1093\/nar\/30.1.402","article-title":"LIGAND: Database of chemical compounds and reactions in biological pathways","volume":"30","author":"Goto","year":"2002","journal-title":"Nucleic Acids Research"},{"issue":"3","key":"10.1016\/j.eswa.2017.06.026_bib0023","doi-asserted-by":"crossref","first-page":"991","DOI":"10.1021\/ci050400b","article-title":"The blue Obelisk\u2013Interoperability in chemical informatics","volume":"46","author":"Guha","year":"2006","journal-title":"Journal of Chemical Information and Modeling"},{"key":"10.1016\/j.eswa.2017.06.026_bib0024","series-title":"Fourth international conference on natural computation (ICNC \u201908)","first-page":"192","article-title":"On the class imbalance problem","volume":"4","author":"Guo","year":"2008"},{"key":"10.1016\/j.eswa.2017.06.026_bib0025","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.06.026_bib0026","series-title":"Proceedings of the 2005 international conference on advances in intelligent computing - volume part I (ICIC \u201905)","first-page":"878","article-title":"Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning","author":"Han","year":"2005"},{"key":"10.1016\/j.eswa.2017.06.026_bib0027","series-title":"Data mining: Concepts and techniques","author":"Han","year":"2011"},{"issue":"suppl 2","key":"10.1016\/j.eswa.2017.06.026_bib0028","doi-asserted-by":"crossref","first-page":"W652","DOI":"10.1093\/nar\/gkq367","article-title":"SIMCOMP\/SUBCOMP: Chemical structure search servers for network analyses","volume":"38","author":"Hattori","year":"2010","journal-title":"Nucleic Acids Research"},{"issue":"9","key":"10.1016\/j.eswa.2017.06.026_bib0029","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"12","key":"10.1016\/j.eswa.2017.06.026_bib0030","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1093\/bioinformatics\/btq223","article-title":"Finding metabolic pathways using atom tracking","volume":"26","author":"Heath","year":"2010","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0031","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1089\/cmb.2009.0216","article-title":"Computing atom mappings for biochemical reactions without subgraph isomorphism","volume":"18","author":"Heinonen","year":"2011","journal-title":"Journal of Computational Biology"},{"issue":"6","key":"10.1016\/j.eswa.2017.06.026_bib0032","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s10295-004-0144-7","article-title":"Encoding microbial metabolic logic: Predicting biodegradation","volume":"31","author":"Hou","year":"2004","journal-title":"Journal of Industrial Microbiology and Biotechnology"},{"issue":"7","key":"10.1016\/j.eswa.2017.06.026_bib0033","doi-asserted-by":"crossref","first-page":"8580","DOI":"10.1016\/j.eswa.2011.01.061","article-title":"A new weighted approach to imbalanced data classification problem via support vector machine with quadratic cost function","volume":"38","author":"Hwang","year":"2011","journal-title":"Expert Systems with Applications"},{"issue":"8","key":"10.1016\/j.eswa.2017.06.026_bib0034","doi-asserted-by":"crossref","first-page":"e41882","DOI":"10.1371\/journal.pone.0041882","article-title":"A comparison of MCC and CEN error measures in multi-Class prediction","volume":"7","author":"Jurman","year":"2012","journal-title":"PLoS One"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0035","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1093\/nar\/28.1.27","article-title":"KEGG: Kyoto encyclopedia of genes and genomes","volume":"28","author":"Kanehisa","year":"2000","journal-title":"Nucleic Acids Research"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0036","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1093\/nar\/30.1.59","article-title":"The metacyc database","volume":"30","author":"Karp","year":"2002","journal-title":"Nucleic Acids Research"},{"issue":"6","key":"10.1016\/j.eswa.2017.06.026_bib0037","first-page":"1","article-title":"KCF-S: KEGG chemical function and substructure for improved interpretability and prediction in chemical bioinformatics","volume":"7","author":"Kotera","year":"2013","journal-title":"BMC Systems Biology"},{"issue":"12","key":"10.1016\/j.eswa.2017.06.026_bib0038","doi-asserted-by":"crossref","first-page":"i165","DOI":"10.1093\/bioinformatics\/btu265","article-title":"Metabolome-scale prediction of intermediate compounds in multistep metabolic pathways with a recursive supervised approach","volume":"30","author":"Kotera","year":"2014","journal-title":"Bioinformatics"},{"issue":"13","key":"10.1016\/j.eswa.2017.06.026_bib0039","doi-asserted-by":"crossref","first-page":"i135","DOI":"10.1093\/bioinformatics\/btt244","article-title":"Supervised de novo reconstruction of metabolic pathways from metabolome-scale compound sets","volume":"29","author":"Kotera","year":"2013","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2017.06.026_bib0040","unstructured":"Laboratoire de Bioinformatique des G\u00e9nomes et des R\u00e9seaux (BiGRe) (2010). Network analysis tools (NeAT): Metabolic pathfinder. http:\/\/rsat.bigre.ulb.ac.be\/pathfindingsupplementref\/ReferencePathways.html. Accessed 05.08.10."},{"issue":"Database-Issue","key":"10.1016\/j.eswa.2017.06.026_bib0041","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1093\/nar\/gkh139","article-title":"The amaze lightbench: A web interface to a relational database of cellular processes.","volume":"32","author":"Lemer","year":"2004","journal-title":"Nucleic Acids Research"},{"issue":"22\u201323","key":"10.1016\/j.eswa.2017.06.026_bib0042","doi-asserted-by":"crossref","first-page":"5051","DOI":"10.1016\/j.ces.2004.09.021","article-title":"Computational discovery of biochemical routes to specialty chemicals","volume":"59","author":"Li","year":"2004","journal-title":"Chemical Engineering Science"},{"key":"10.1016\/j.eswa.2017.06.026_bib0043","series-title":"Sixth international conference on data mining (ICDM \u201906)","first-page":"965","article-title":"Exploratory under-sampling for class-imbalance learning","author":"Liu","year":"2006"},{"issue":"11","key":"10.1016\/j.eswa.2017.06.026_bib0044","doi-asserted-by":"crossref","first-page":"1537","DOI":"10.1093\/bioinformatics\/btr177","article-title":"Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds","volume":"27","author":"Mu","year":"2011","journal-title":"Bioinformatics"},{"key":"10.1016\/j.eswa.2017.06.026_bib0045","series-title":"Lehninger principles of biochemistry","author":"Nelson","year":"2004"},{"key":"10.1016\/j.eswa.2017.06.026_bib0046","series-title":"C4.5: Programs for machine learning","author":"Quinlan","year":"1993"},{"issue":"2","key":"10.1016\/j.eswa.2017.06.026_bib0047","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1021\/ci010381f","article-title":"Heuristics for similarity searching of chemical graphs using a maximum common edge subgraph algorithm","volume":"42","author":"Raymond","year":"2002","journal-title":"Journal of Chemical Information and Computer Sciences"},{"key":"10.1016\/j.eswa.2017.06.026_bib0048","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: A graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"Journal of Applied Mathematics and Computing"},{"issue":"19","key":"10.1016\/j.eswa.2017.06.026_bib0049","doi-asserted-by":"crossref","first-page":"2507","DOI":"10.1093\/bioinformatics\/btm344","article-title":"A review of feature selection techniques in bioinformatics","volume":"23","author":"Saeys","year":"2007","journal-title":"Bioinformatics"},{"issue":"2","key":"10.1016\/j.eswa.2017.06.026_bib0050","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1021\/ci025584y","article-title":"The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics.","volume":"43","author":"Steinbeck","year":"2003","journal-title":"Journal of Chemical Information and Computer Sciences"},{"issue":"12","key":"10.1016\/j.eswa.2017.06.026_bib0051","doi-asserted-by":"crossref","first-page":"1173","DOI":"10.1007\/s00894-007-0233-4","article-title":"Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements","volume":"13","author":"Stewart","year":"2007","journal-title":"Journal of Molecular Model"},{"issue":"04","key":"10.1016\/j.eswa.2017.06.026_bib0052","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1142\/S0218001409007326","article-title":"Classification of imbalanced data: A review","volume":"23","author":"Sun","year":"2009","journal-title":"International Journal Pattern of Recognition"},{"issue":"12","key":"10.1016\/j.eswa.2017.06.026_bib0053","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1016\/j.patrec.2013.04.019","article-title":"Handling imbalanced data sets with synthetic boundary data generation using bootstrap re-sampling and adaboost techniques","volume":"34","author":"Thanathamathee","year":"2013","journal-title":"Pattern Recognition Letters"},{"key":"10.1016\/j.eswa.2017.06.026_bib0054","series-title":"Proceedings of the sixteen midwest artificial intelligence and cognitive science conference","first-page":"67","article-title":"Issues in mining imbalanced data sets - a review paper","author":"Visa","year":"2005"},{"issue":"10","key":"10.1016\/j.eswa.2017.06.026_bib0055","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1109\/TKDE.2009.187","article-title":"Combating the small sample class imbalance problem using feature selection","volume":"22","author":"Wasikowski","year":"2010","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2017.06.026_bib0056","series-title":"Biological and artificial intelligence environments","first-page":"91","article-title":"Recent applications of neural networks in bioinformatics","author":"Wood","year":"2005"},{"key":"10.1016\/j.eswa.2017.06.026_bib0057","series-title":"Fifth international conference on hybrid intelligent systems (HIS\u201905)","first-page":"6","article-title":"An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics","author":"Yoon","year":"2005"},{"issue":"1","key":"10.1016\/j.eswa.2017.06.026_bib0058","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1145\/1007730.1007741","article-title":"Feature selection for text categorization on imbalanced data","volume":"6","author":"Zheng","year":"2004","journal-title":"SIGKDD Explorations Newsletter"},{"issue":"14","key":"10.1016\/j.eswa.2017.06.026_bib0059","doi-asserted-by":"crossref","first-page":"1957","DOI":"10.1093\/bioinformatics\/btr271","article-title":"The strength of chemical linkage as a criterion for pruning metabolic graphs","volume":"27","author":"Zhou","year":"2011","journal-title":"Bioinformatics"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417304438?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417304438?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,26]],"date-time":"2019-09-26T05:02:37Z","timestamp":1569474157000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417417304438"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12]]},"references-count":59,"alternative-id":["S0957417417304438"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.06.026","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Metabolic pathway synthesis based on predicting compound transformable pairs by using neural classifiers with imbalanced data handling","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.06.026","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}