{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T22:36:29Z","timestamp":1726439789528},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.eswa.2017.03.058","type":"journal-article","created":{"date-parts":[[2017,3,29]],"date-time":"2017-03-29T07:02:15Z","timestamp":1490770935000},"page":"372-383","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["A hybrid approach for improving unsupervised fault detection for robotic systems"],"prefix":"10.1016","volume":"81","author":[{"given":"Eliahu","family":"Khalastchi","sequence":"first","affiliation":[]},{"given":"Meir","family":"Kalech","sequence":"additional","affiliation":[]},{"given":"Lior","family":"Rokach","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.03.058_bib0001","series-title":"Proceedings of the IEEE international conference on robotics and automation","first-page":"2339","article-title":"Multi-robot perimeter patrol in adversarial settings","author":"Agmon","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.058_bib0002","series-title":"Knowledge-based systems","author":"Akerkar","year":"2010"},{"key":"10.1016\/j.eswa.2017.03.058_bib0003","series-title":"Machine learning: An artificial intelligence approach","author":"Anderson","year":"1986"},{"key":"10.1016\/j.eswa.2017.03.058_bib0004","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.eswa.2016.06.035","article-title":"An evolving approach to unsupervised and real-time fault detection in industrial processes","volume":"63","author":"Bezerra","year":"2016","journal-title":"Expert Systems with Applications"},{"issue":"5","key":"10.1016\/j.eswa.2017.03.058_bib0005","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1163\/156855306776985577","article-title":"Rescue robotics - a crucial milestone on the road to autonomous systems","volume":"20","author":"Birk","year":"2006","journal-title":"Advanced Robotics"},{"key":"10.1016\/j.eswa.2017.03.058_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1541880.1541882","article-title":"Anomaly detection: A survey","volume":"41","author":"Chandola","year":"2009","journal-title":"ACM Computing Surveys"},{"key":"10.1016\/j.eswa.2017.03.058_bib0007","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/s10514-007-9060-9","article-title":"Fault detection in autonomous robots based on fault injection and learning","volume":"24","author":"Christensen","year":"2008","journal-title":"Autonomous Robots"},{"key":"10.1016\/j.eswa.2017.03.058_bib0009","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.neucom.2014.05.086","article-title":"Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier","volume":"150","author":"Costa","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.03.058_bib0010","series-title":"Robot reliability and safety","author":"Dhillon","year":"1991"},{"key":"10.1016\/j.eswa.2017.03.058_bib0011","series-title":"Proceedings of IEEE\/RSJ international conference on intelligent robots and systems (IROS)","article-title":"Online data-driven fault detection for robotic systems","author":"Golombek","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.058_bib0012","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1002\/rob.20226","article-title":"Supporting wilderness search and rescue using a camera-equipped mini UAV","volume":"25","author":"Goodrich","year":"2008","journal-title":"Field Robotics"},{"key":"10.1016\/j.eswa.2017.03.058_bib0014","series-title":"Proceedings of international conference on intelligent robots and systems (IROS)","article-title":"A multi-model based fault detection and diagnosis of internal sensors for mobile robot","author":"Hashimoto","year":"2003"},{"key":"10.1016\/j.eswa.2017.03.058_bib0015","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1023\/B:AIRE.0000045502.10941.a9","article-title":"A survey of outlier detection methodologies","volume":"22","author":"Hodge","year":"2004","journal-title":"Artificial Intelligence Review"},{"key":"10.1016\/j.eswa.2017.03.058_bib0016","series-title":"Proceedings of international conference on intelligent robots and systems (IROS)","article-title":"Model-free robot anomaly detection","author":"Hornung","year":"2014"},{"key":"10.1016\/j.eswa.2017.03.058_bib0017","series-title":"Executive summary world robotics 2016 industrial robots","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.058_bib0018","series-title":"Executive summary world robotics 2016 service robot","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.058_bib0019","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.arcontrol.2004.12.002","article-title":"Model-based fault-detection and diagnosis \u2013 status and applications","volume":"29","author":"Isermann","year":"2005","journal-title":"Annual Reviews in Control"},{"key":"10.1016\/j.eswa.2017.03.058_bib0020","series-title":"Proceedings of the 12th international conference on autonomous agents and multi-agent systems (AAMAS-2013)","article-title":"Sensor fault detection and diagnosis for autonomous systems","author":"Khalastchi","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.058_bib0021","series-title":"Proceedings of the 13th international conference on autonomous agents and multiagent systems (AAMAS-2014)","article-title":"A hybrid approach for fault detection in autonomous physical agents","author":"Khalastchi","year":"2014"},{"key":"10.1016\/j.eswa.2017.03.058_bib0022","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1007\/s10115-014-0754-y","article-title":"Online data-driven anomaly detection in autonomous robots","volume":"43","author":"Khalastchi","year":"2015","journal-title":"Knowledge and Information Systems"},{"key":"10.1016\/j.eswa.2017.03.058_bib0023","series-title":"Proceedings of the 10th international conference on autonomous agents and multiagent systems (AAMAS-2011)","article-title":"Online anomaly detection in unmanned vehicles","author":"Khalastchi","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.058_bib0025","series-title":"Proceedings of the 22nd international workshop on principles of diagnosis (DX-2011)","article-title":"Using Naive Physics for unknown external faults in robotics","author":"Akhtar","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.058_bib0026","series-title":"Proceedings of the 41st international conference on dependable systems & networks (DSN)","first-page":"25","article-title":"A methodology for the generation of efficient error detection mechanisms","author":"Leeke","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.058_bib0027","series-title":"Proceedings of the National Institute of Sciences of India","first-page":"49","article-title":"On the generalised distance in statistics","volume":"2","author":"Mahalanobis","year":"1936"},{"key":"10.1016\/j.eswa.2017.03.058_bib0028","series-title":"Diagnosing faults in electrical power systems of spacecraft and aircraft","author":"Mengshoel","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.058_bib0029","series-title":"Proceedings of USENIX annual technical conference","article-title":"The flightgear flight simulator","author":"Perry","year":"2004"},{"key":"10.1016\/j.eswa.2017.03.058_bib0030","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.robot.2005.09.004","article-title":"Execution monitoring in robotics: A survey","volume":"53","author":"Pettersson","year":"2005","journal-title":"Robotics and Autonomous Systems"},{"key":"10.1016\/j.eswa.2017.03.058_bib0031","series-title":"Proceedings of IEEE symposium on computational intelligence and data mining (CIDM)","first-page":"504","article-title":"Incremental local outlier detection for data streams","author":"Pokrajac","year":"2007"},{"key":"10.1016\/j.eswa.2017.03.058_bib0032","series-title":"Proceedings of ICRA workshop on open source software","article-title":"ROS: An open-source robot operating system","author":"Quigley","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.058_bib0034","unstructured":"Robocup. (2013). Retrieved from http:\/\/www.robocup.org\/."},{"key":"10.1016\/j.eswa.2017.03.058_bib0036","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.inffus.2014.03.006","article-title":"Fault detection in multi-sensor networks based on multivariate time-series models and orthogonal transformations","volume":"20","author":"Serdio","year":"2014","journal-title":"Information Fusion"},{"key":"10.1016\/j.eswa.2017.03.058_bib0037","doi-asserted-by":"crossref","first-page":"23:1","DOI":"10.1145\/1754414.1754419","article-title":"Sensor faults: Detection methods and prevalence in real-world datasets","volume":"6","author":"Sharma","year":"2010","journal-title":"ACM Transactions on Sensor Networks"},{"key":"10.1016\/j.eswa.2017.03.058_bib0038","series-title":"RoboCup 2012: robot soccer world cup XVI","first-page":"344","article-title":"A survey about faults of robots used in RoboCup","author":"Steinbauer","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.058_bib0039","series-title":"Proceedings of the 19th international joint conference on artificial intelligence (IJCAI-05)","first-page":"1742","article-title":"Detecting and locating faults in the control software of autonomous mobile robots","author":"Steinbauer","year":"2005"},{"key":"10.1016\/j.eswa.2017.03.058_bib0040","series-title":"Proceedings of the 21st international workshop on principles of diagnosis (DX-10)","article-title":"On the way to automated belief repair for autonomous robots","author":"Steinbauer","year":"2010"},{"key":"10.1016\/j.eswa.2017.03.058_bib0041","series-title":"Support vector machines","author":"Steinwart","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.058_bib0042","series-title":"Exploring artificial intelligence in the new millennium","first-page":"1","article-title":"Robotic mapping: A survey","author":"Thrun","year":"2002"},{"key":"10.1016\/j.eswa.2017.03.058_bib0043","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.engappai.2013.09.018","article-title":"Bridging control and artificial intelligence theories for diagnosis: A survey","volume":"27","author":"Trav\u00e9-Massuy\u00e8s","year":"2014","journal-title":"Engineering Applications of Artificial Intelligence"},{"key":"10.1016\/j.eswa.2017.03.058_bib0044","series-title":"Proceedings of IEEE\/RSJ international conference on intelligent robots and systems (IROS)","article-title":"Autonomous fault detection for performance bugs in component-based robotic systems","author":"Wienke","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.058_bib0045","doi-asserted-by":"crossref","first-page":"9193","DOI":"10.1073\/pnas.87.23.9193","article-title":"Multisurface method of pattern separation for medical diagnosis applied to breast cytology","volume":"87","author":"Wolberg","year":"1990","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.eswa.2017.03.058_bib0046","series-title":"Proceedings of the 24th international workshop on principles of diagnosis","article-title":"Automated generation of diagnosis models for ROS-based robot systems","author":"Zaman","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.058_bib0047","series-title":"Proceedings of IEEE international conference on robotics and automation (ICRA)","article-title":"An integrated model-based diagnosis and repair architecture for ROS-based robot systems","author":"Zaman","year":"2013"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741741730221X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095741741730221X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T04:51:05Z","timestamp":1535950265000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095741741730221X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":42,"alternative-id":["S095741741730221X"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.058","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A hybrid approach for improving unsupervised fault detection for robotic systems","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.058","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}