{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:30:05Z","timestamp":1720315805820},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61472305","61070143"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007128","name":"Shaanxi province","doi-asserted-by":"publisher","award":["2015GY027"],"id":[{"id":"10.13039\/501100007128","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004750","name":"Aeronautical Science Foundation of China","doi-asserted-by":"publisher","award":["20151981009"],"id":[{"id":"10.13039\/501100004750","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.eswa.2017.03.054","type":"journal-article","created":{"date-parts":[[2017,3,27]],"date-time":"2017-03-27T11:10:03Z","timestamp":1490613003000},"page":"134-146","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Clustered intrinsic label correlations for multi-label classification"],"prefix":"10.1016","volume":"81","author":[{"given":"Ju-Jie","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Min","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.03.054_bib0001","first-page":"1817\u22121853","article-title":"A framework for learning predictive structures from multiple tasks and unlabeled data","volume":"6","author":"Ando","year":"2005","journal-title":"Journal of Machine Learning Research"},{"issue":"3","key":"10.1016\/j.eswa.2017.03.054_bib0002","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","article-title":"Convex multi-task feature learning","volume":"73","author":"Argyriou","year":"2008","journal-title":"Machine Learning"},{"issue":"9","key":"10.1016\/j.eswa.2017.03.054_bib0004","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1016\/j.patcog.2004.03.009","article-title":"Learning multi-label scene classification","volume":"37","author":"Boutell","year":"2004","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.eswa.2017.03.054_bib0005","series-title":"European conference on machine learning","first-page":"63\u221274","article-title":"A comparison of ranking methods for classification algorithm selection","author":"Brazdil","year":"2000"},{"key":"10.1016\/j.eswa.2017.03.054_bib0006","doi-asserted-by":"crossref","first-page":"163\u2212166","DOI":"10.1016\/0167-6377(84)90010-5","article-title":"An O(n) algorithm for quadratic knapsack problems","volume":"3","author":"Brucker","year":"1984","journal-title":"Operations Research Letters"},{"key":"10.1016\/j.eswa.2017.03.054_bib0007","series-title":"international conference on computer vision","first-page":"2098\u22122105","article-title":"Efficient multi-label ranking for multi-class learning: Application to object recognition","author":"Bucak","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.054_bib0008","doi-asserted-by":"crossref","first-page":"1\u221227","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A library for supporting vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Transactions on Intelligent Systems and Technology"},{"key":"10.1016\/j.eswa.2017.03.054_bib0009","series-title":"Annual conference on neural information processing systems","first-page":"1538\u22121546","article-title":"Feature-aware label space dimension reduction for multi-label classification","author":"Chen","year":"2012"},{"issue":"5","key":"10.1016\/j.eswa.2017.03.054_bib0010","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1109\/TPAMI.2012.189","article-title":"A convex formulation for learning a shared predictive structures from multiple tasks","volume":"35","author":"Chen","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.eswa.2017.03.054_bib0011","doi-asserted-by":"crossref","first-page":"211\u2212225","DOI":"10.1007\/s10994-009-5127-5","article-title":"Combining instance-based learning and logistic regression for multilabel classification","volume":"76","author":"Cheng","year":"2009","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.054_bib0012","series-title":"International conference on machine learning","first-page":"279\u2212286","article-title":"Bayes optimal multilabel classification via probabilistic classifier chains","author":"Dembczynski","year":"2010"},{"key":"10.1016\/j.eswa.2017.03.054_bib0013","series-title":"International conference on machine learning","first-page":"29\u221236","article-title":"K-means clustering via principal component analysis","author":"Ding","year":"2004"},{"key":"10.1016\/j.eswa.2017.03.054_bib0014","series-title":"Annual conference on neural information processing systems","first-page":"681","article-title":"A kernel method for multi-labelled classification","author":"Elisseeff","year":"2001"},{"key":"10.1016\/j.eswa.2017.03.054_bib0015","series-title":"ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"109\u2212117","article-title":"Regularized multi-task learning","author":"Evgeniou","year":"2004"},{"key":"10.1016\/j.eswa.2017.03.054_bib0016","doi-asserted-by":"crossref","first-page":"133\u2212153","DOI":"10.1007\/s10994-008-5064-8","article-title":"Multilabel classification via calibrated label ranking","volume":"73","author":"Furankranz","year":"2008","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.054_bib0017","series-title":"Matrix computations","author":"Golub","year":"1996"},{"key":"10.1016\/j.eswa.2017.03.054_bib0018","series-title":"The elements of statistical learning: Data mining, inference, and prediction","author":"Hastie","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.054_bib0019","series-title":"International conference on machine learning","first-page":"408\u2212415","article-title":"A dual coordinate descent method for large-scale linear SVM","author":"Hsieh","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0020","series-title":"Annual conference on neural information processing systems","first-page":"772\u2212780","article-title":"Multi-label prediction via compressed sensing","author":"Hsu","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.054_bib0021","series-title":"ACM SIGKDD conference on knowledge discovery and data engineering","first-page":"525","article-title":"Multi-label hypothesis reuse","author":"Huang","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.054_bib0022","series-title":"AAAI conference on artificial intelligence","first-page":"949","article-title":"Multi-label learning by exploiting label correlations locally","author":"Huang","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.054_bib0023","doi-asserted-by":"crossref","first-page":"1897","DOI":"10.1016\/j.artint.2008.08.002","article-title":"Label ranking by learning pairwise preferences","volume":"172","author":"Hullermeier","year":"2008","journal-title":"Artif. Intell."},{"key":"10.1016\/j.eswa.2017.03.054_bib0024","series-title":"Annual conference on neural information processing systems","first-page":"745\u2212752","article-title":"Clustered multi-task learning: A convex formulation","author":"Jacob","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0025","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1754428.1754431","article-title":"A shared-subspace learning framework for multi-label classification","volume":"4","author":"Ji","year":"2010","journal-title":"ACM Transactions on Knowledge Discovery from Data"},{"key":"10.1016\/j.eswa.2017.03.054_bib0026","series-title":"IEEE international conference on data mining","first-page":"995\u22121000","article-title":"Multi-label classification using ensemble of pruned sets","author":"Read","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0027","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","article-title":"Classifier chains for multi-label classification","volume":"3","author":"Read","year":"2011","journal-title":"Machine Learning"},{"issue":"2\/3","key":"10.1016\/j.eswa.2017.03.054_bib0028","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1023\/A:1007649029923","article-title":"Boostexter: A boosting-based system for text categorization","volume":"39","author":"Schapire","year":"2000","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.054_bib0029","series-title":"Hellenic conference on artificial intelligence","first-page":"401","article-title":"An empirical study of lazy multilabel classification algorithms","author":"Spyromitros","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0030","series-title":"ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"668\u2212676","article-title":"Hyperspectral learning for multi-label classification","author":"Sun","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0031","first-page":"2508\u22122542","article-title":"Multi-label classification with principal label space transformation","volume":"9","author":"Tai","year":"2012","journal-title":"Neural Computation"},{"key":"10.1016\/j.eswa.2017.03.054_bib0032","series-title":"International conference on music information retrieval","first-page":"325","article-title":"Multi-label classification of music into emotions","author":"Trohidis","year":"2008"},{"key":"10.1016\/j.eswa.2017.03.054_bib0033","doi-asserted-by":"crossref","first-page":"1\u221213","DOI":"10.4018\/jdwm.2007070101","article-title":"Multi-label classification: An overview","volume":"3","author":"Tsoumakas","year":"2007","journal-title":"International Journal of Data Warehousing and Mining"},{"key":"10.1016\/j.eswa.2017.03.054_bib0034","series-title":"Data mining and knowledge discovery handbook","first-page":"667\u2212685","article-title":"Mining multi-label data","author":"Tsoumakas","year":"2010"},{"key":"10.1016\/j.eswa.2017.03.054_bib0035","first-page":"1079\u22121089","article-title":"Random k-labelsets for multilabel classification","volume":"7","author":"Tsoumakas","year":"2011","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2017.03.054_bib0036","series-title":"International conference on data mining","first-page":"562\u2212568","article-title":"Semi-supervised multi-task learning with task regularizations","author":"Wang","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.054_bib0037","doi-asserted-by":"crossref","first-page":"4796","DOI":"10.1016\/j.eswa.2011.09.138","article-title":"An efficient multi-label support vector machine with a zero label","volume":"39","author":"Xu","year":"2012","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.03.054_bib0038","first-page":"35\u221263","article-title":"Multi-task learning for classification with dirichlet process priors","volume":"8","author":"Xue","year":"2007","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.03.054_bib0039","series-title":"Annual conference on neural information processing systems","first-page":"1057\u22121064","article-title":"Spectral relaxation for k-means clustering","author":"Zha","year":"2002"},{"key":"10.1016\/j.eswa.2017.03.054_bib0040","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.neucom.2014.11.062","article-title":"Multi-label learning with discriminative features for each label","volume":"154","author":"Zhang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.03.054_bib0041","series-title":"International joint conference on artificial intelligence","first-page":"1609\u22121614","article-title":"LIFT: Multi-label learning with label-specific features","author":"Zhang","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.054_bib0042","series-title":"ACM SIGKDD conference on knowledge discovery and data engineering","first-page":"999","article-title":"Multi-label learning by exploiting label dependency","author":"Zhang","year":"2010"},{"key":"10.1016\/j.eswa.2017.03.054_bib0043","doi-asserted-by":"crossref","first-page":"2038\u22122048","DOI":"10.1016\/j.patcog.2006.12.019","article-title":"ML-kNN: A lazy learning approach to multi-label learning","volume":"40","author":"Zhang","year":"2007","journal-title":"Pattern Recognition"},{"issue":"8","key":"10.1016\/j.eswa.2017.03.054_bib0044","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.1109\/TKDE.2013.39","article-title":"A review on multi-label learning algorithms","volume":"26","author":"Zhang","year":"2014","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.eswa.2017.03.054_bib0045","series-title":"annual conference on neural information processing systems","first-page":"702\u2212710","article-title":"Clustered multi-task learning via alternating structure optimization","author":"Zhou","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.054_bib0046","doi-asserted-by":"crossref","first-page":"69\u2212126","DOI":"10.1007\/s10994-011-5276-1","article-title":"Compressed labeling on distilled labelsets for multi-label learning","volume":"88","author":"Zhou","year":"2012","journal-title":"Machine Learning"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417302105?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417302105?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T02:01:19Z","timestamp":1535940079000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417417302105"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":45,"alternative-id":["S0957417417302105"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.054","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Clustered intrinsic label correlations for multi-label classification","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.054","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}