{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T01:29:57Z","timestamp":1720315797965},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004410","name":"Scientific and Technological Research Council of Turkey","doi-asserted-by":"crossref","award":["113E591"],"id":[{"id":"10.13039\/501100004410","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Scientific Research Projects Coordination Unit"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.eswa.2017.03.049","type":"journal-article","created":{"date-parts":[[2017,3,23]],"date-time":"2017-03-23T19:41:56Z","timestamp":1490298116000},"page":"79-87","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Pre-determination of OSA degree using morphological features of the ECG signal"],"prefix":"10.1016","volume":"81","author":[{"given":"\u015eule","family":"Y\u00fccelba\u015f","sequence":"first","affiliation":[]},{"given":"C\u00fcneyt","family":"Y\u00fccelba\u015f","sequence":"additional","affiliation":[]},{"given":"G\u00fclay","family":"Tezel","sequence":"additional","affiliation":[]},{"given":"Seral","family":"\u00d6z\u015fen","sequence":"additional","affiliation":[]},{"given":"Serkan","family":"K\u00fc\u00e7\u00e7\u00fckt\u00fcrk","sequence":"additional","affiliation":[]},{"given":"\u015eebnem","family":"Yosunkaya","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.03.049_bib0001","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/S1087-0792(98)90053-3","article-title":"Cardiac arrhythmias during normal sleep and in obstructive sleep apnea syndrome","volume":"2","author":"Adlakha","year":"1998","journal-title":"Sleep Medicine Reviews"},{"key":"10.1016\/j.eswa.2017.03.049_bib0002","series-title":"Learning from data","first-page":"199","article-title":"A comparative evaluation of sequential feature selection algorithms","author":"Aha","year":"1996"},{"key":"10.1016\/j.eswa.2017.03.049_bib0003","series-title":"Proceedings of 2012 IEEE international conference on electro\/information technology (EIT)","first-page":"1","article-title":"Detection of obstructive sleep apnea through ECG signal features","author":"Almazaydeh","year":"2012"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.049_bib0004","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18201\/ijisae.79075","article-title":"SVM-based sleep apnea identification using optimal RR-interval features of the ECG signal","volume":"4","author":"Almazaydeh","year":"2016","journal-title":"International Journal of Intelligent Systems and Applications in Engineering"},{"key":"10.1016\/j.eswa.2017.03.049_bib0005","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1016\/j.jelectrocard.2011.03.009","article-title":"Tissue doppler atrial conduction times and electrocardiogram interlead P-wave durations with varying severity of obstructive sleep apnea","volume":"44","author":"Cagirci","year":"2011","journal-title":"Journal of Electrocardiology"},{"key":"10.1016\/j.eswa.2017.03.049_bib0006","doi-asserted-by":"crossref","first-page":"e85","DOI":"10.1016\/j.ijcard.2007.11.037","article-title":"P-wave duration and dispersion in patients with obstructive sleep apnea","volume":"133","author":"Can","year":"2009","journal-title":"International Journal of Cardiology"},{"key":"10.1016\/j.eswa.2017.03.049_bib0007","series-title":"Proceedings of 2013 IEEE international conference on automation science and engineering (CASE)","first-page":"1","article-title":"A severity measurement system for obstructive sleep apnea discrimination using a single ECG signal","author":"Chen","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.049_bib0008","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1109\/TBME.2003.812203","article-title":"Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea","volume":"50","author":"De Chazal","year":"2003","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2017.03.049_bib0009","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1016\/j.sleep.2006.08.002","article-title":"Effect of CPAP on QT interval dispersion in obstructive sleep apnea patients without hypertension","volume":"8","author":"Dursunoglu","year":"2007","journal-title":"Sleep Medicine"},{"key":"10.1016\/j.eswa.2017.03.049_bib0010","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.ejcdt.2012.10.025","article-title":"Nocturnal heart rate variability analysis as a screening tool for obstructive sleep apnea syndrome","volume":"61","author":"Galal","year":"2012","journal-title":"Egyptian Journal of Chest Diseases and Tuberculosis"},{"issue":"23","key":"10.1016\/j.eswa.2017.03.049_bib0011","doi-asserted-by":"crossref","first-page":"e215","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"},{"key":"10.1016\/j.eswa.2017.03.049_bib0012","series-title":"Proceedings of 2012 38th annual northeast bioengineering conference (NEBEC)","first-page":"159","article-title":"Sleep apnea diagnosis via single channel ECG feature selection","author":"Guruler","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.049_bib0013","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.bbe.2015.11.003","article-title":"Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating","volume":"36","author":"Hassan","year":"2016","journal-title":"Biocybernetics and Biomedical Engineering"},{"key":"10.1016\/j.eswa.2017.03.049_bib0014","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.neucom.2016.12.062","article-title":"An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting","volume":"235","author":"Hassan","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.eswa.2017.03.049_bib0015","series-title":"Proceedings of 2011 IEEE symposium on industrial electronics and applications (ISIEA)","first-page":"638","article-title":"The importance of the very low frequency power of heart rate variability in screening of patients with obstructive sleep Apnea","author":"Hossen","year":"2011"},{"key":"10.1016\/j.eswa.2017.03.049_bib0016","series-title":"Proceedings of 2012 IEEE international symposium on circuits and systems","first-page":"341","article-title":"Real-time obstructive sleep apnea detection based on ECG derived respiration signal","author":"Huang","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.049_bib0017","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.sleep.2011.01.014","article-title":"Effects of adenotonsillectomy on R\u2013R interval and brain natriuretic peptide levels in children with sleep apnea: A preliminary report","volume":"12","author":"Kaditis","year":"2011","journal-title":"Sleep Medicine"},{"key":"10.1016\/j.eswa.2017.03.049_bib0018","series-title":"Proceedings of 2012 international joint conference on neural networks (IJCNN)","first-page":"1","article-title":"Using Bootstrap AdaBoost with KNN for ECG-based automated obstructive sleep apnea detection","author":"Kao","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.049_bib0019","series-title":"Proceedings of 2013 6th international IEEE\/EMBS conference on neural engineering (NER)","first-page":"1358","article-title":"Detection of sleep apnea events via tracking nonlinear dynamic cardio-respiratory coupling from electrocardiogram signals","author":"Karandikar","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.049_bib0020","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.compbiomed.2008.11.003","article-title":"Automated recognition of patients with obstructive sleep apnoea using wavelet-based features of electrocardiogram recordings","volume":"39","author":"Khandoker","year":"2009","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.eswa.2017.03.049_bib0021","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1016\/j.measurement.2012.01.044","article-title":"Comparison of heart rate variability (HRV) and nasal pressure in obstructive sleep apnea (OSA) patients during sleep apnea","volume":"45","author":"Kim","year":"2012","journal-title":"Measurement"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.049_bib0022","doi-asserted-by":"crossref","first-page":"159","DOI":"10.2307\/2529310","article-title":"The measurement of observer agreement for categorical data","volume":"33","author":"Landis","year":"1977","journal-title":"Biometrics"},{"key":"10.1016\/j.eswa.2017.03.049_bib0023","first-page":"237","article-title":"A statistical framework for the prediction of fault-proneness","author":"Ma","year":"2006","journal-title":"Advances in Machine Learning Application in Software Engineering, Idea Group Inc"},{"key":"10.1016\/j.eswa.2017.03.049_bib0024","series-title":"Proceedings of Computers in Cardiology, 2003","first-page":"311","article-title":"Comparison of heart rhythm and morphological ECG features in recognition of sleep apnea from the ECG","author":"Maier","year":"2003"},{"key":"10.1016\/j.eswa.2017.03.049_bib0025","first-page":"57","article-title":"Machine learning with applications in categorization, popularity and sequence labeling","volume":"30","author":"Nicolov","year":"2012","journal-title":"Technology"},{"key":"10.1016\/j.eswa.2017.03.049_bib0026","first-page":"1067","article-title":"Does untreated obstructive sleep apnea lead to death","volume":"31","author":"Pack","year":"2008","journal-title":"Sleep"},{"key":"10.1016\/j.eswa.2017.03.049_bib0027","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.compbiomed.2011.10.012","article-title":"Empirical mode decomposition based ECG enhancement and QRS detection","volume":"42","author":"Pal","year":"2012","journal-title":"Computers in Biology and Medicine"},{"issue":"3","key":"10.1016\/j.eswa.2017.03.049_bib0028","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1109\/TBME.1985.325532","article-title":"A real-time QRS detection algorithm","volume":"32","author":"Pan","year":"1985","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.049_bib0029","first-page":"37","article-title":"Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation","volume":"2","author":"Powers","year":"2011","journal-title":"Journal of Machine Learning Technologies"},{"key":"10.1016\/j.eswa.2017.03.049_bib0030","series-title":"Proceedings of annual international conference of the IEEE engineering in medicine and biology society (EMBC 2009)","first-page":"5559","article-title":"Detection of obstructive sleep apnea in ECG recordings using time-frequency distributions and dynamic features","author":"Quiceno-Manrique","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.049_bib0031","series-title":"Proceedings of 2016 2nd international conference on advances in electrical, electronics, information, communication and bio-informatics (AEEICB)","first-page":"322","article-title":"Detection of sleep apnea through ECG signal features","author":"Sivaranjni","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.049_bib0032","doi-asserted-by":"crossref","first-page":"1532","DOI":"10.1109\/TBME.2015.2498199","article-title":"An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals","volume":"63","author":"Song","year":"2016","journal-title":"IEEE Transactions on Biomedical Engineering"},{"key":"10.1016\/j.eswa.2017.03.049_bib0033","doi-asserted-by":"crossref","first-page":"1600","DOI":"10.1016\/j.eswa.2009.06.049","article-title":"Classification of sleep apnea by using wavelet transform and artificial neural networks","volume":"37","author":"Tagluk","year":"2010","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.03.049_bib0034","volume":"vol. 2016","year":"2016"},{"issue":"11","key":"10.1016\/j.eswa.2017.03.049_bib0035","first-page":"1","article-title":"Weka: Practical machine learning tools and techniques with Java implementations","volume":"99","author":"Witten","year":"1999","journal-title":"Working Paper Series"},{"key":"10.1016\/j.eswa.2017.03.049_bib0036","doi-asserted-by":"crossref","first-page":"12880","DOI":"10.1016\/j.eswa.2011.04.080","article-title":"An expert system for automated recognition of patients with obstructive sleep apnea using electrocardiogram recordings","volume":"38","author":"Yildiz","year":"2011","journal-title":"Expert Systems with Applications"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417302026?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417302026?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,9,3]],"date-time":"2018-09-03T08:23:32Z","timestamp":1535963012000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417417302026"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":36,"alternative-id":["S0957417417302026"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.049","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Pre-determination of OSA degree using morphological features of the ECG signal","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.049","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}