{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T08:27:14Z","timestamp":1724488034701},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Expert Systems with Applications"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.eswa.2017.03.041","type":"journal-article","created":{"date-parts":[[2017,3,21]],"date-time":"2017-03-21T13:32:41Z","timestamp":1490103161000},"page":"147-162","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Refinement and selection heuristics in subgroup discovery and classification rule learning"],"prefix":"10.1016","volume":"81","author":[{"given":"Anita","family":"Valmarska","sequence":"first","affiliation":[]},{"given":"Nada","family":"Lavra\u010d","sequence":"additional","affiliation":[]},{"given":"Johannes","family":"F\u00fcrnkranz","sequence":"additional","affiliation":[]},{"given":"Marko","family":"Robnik-\u0160ikonja","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.eswa.2017.03.041_bib0001","series-title":"Discovery science - 17th international conference, DS 2014, Bled, Slovenia, october 8\u201310, 2014. proceedings","first-page":"1","article-title":"Explaining mixture models through semantic pattern mining and banded matrix visualization","author":"Adhikari","year":"2014"},{"key":"10.1016\/j.eswa.2017.03.041_bib0002","series-title":"Vldb\u201994, Proceedings of 20th international conference on very large data bases, september 12\u201315, 1994, Santiago de Chile, Chile","first-page":"487","article-title":"Fast algorithms for mining association rules in large databases","author":"Agrawal","year":"1994"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.041_bib0003","first-page":"35","article-title":"Subgroup discovery","volume":"5","author":"Atzmueller","year":"2015","journal-title":"Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.eswa.2017.03.041_bib0004","series-title":"Proceedings of knowledge discovery in databases, PKDD 2006","first-page":"6","article-title":"SD-map - A fast algorithm for exhaustive subgroup discovery","author":"Atzm\u00fcller","year":"2006"},{"issue":"3","key":"10.1016\/j.eswa.2017.03.041_bib0005","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1023\/A:1011429418057","article-title":"Detecting group differences: Mining contrast sets","volume":"5","author":"Bay","year":"2001","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.eswa.2017.03.041_bib0006","series-title":"Computational intelligence and machine learning, proceedings of European symposium on artificial neural networks ESANN 2016","first-page":"77","article-title":"Interpretability of machine learning models and representations: an introduction","author":"Bibal","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.041_bib0007","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/BF00116835","article-title":"The CN2 induction algorithm","volume":"3","author":"Clark","year":"1989","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.041_bib0008","series-title":"Proceedings of the twelfth international conference on machine learning","first-page":"115","article-title":"Fast effective rule induction","author":"Cohen","year":"1995"},{"key":"10.1016\/j.eswa.2017.03.041_bib0009","first-page":"2349","article-title":"Orange: Data mining toolbox in Python","volume":"14","author":"Dem\u0161ar","year":"2013","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.03.041_bib0010","series-title":"Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining, 1999","first-page":"43","article-title":"Efficient mining of emerging patterns: Discovering trends and differences","author":"Dong","year":"1999"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.041_bib0011","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1023\/A:1006524209794","article-title":"Separate-and-conquer rule learning","volume":"13","author":"F\u00fcrnkranz","year":"1999","journal-title":"Artificial Intelligence Review"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.041_bib0012","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/s10994-005-5011-x","article-title":"ROC \u2019n\u2019 rule learning - Towards a better understanding of covering algorithms","volume":"58","author":"F\u00fcrnkranz","year":"2005","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.041_bib0013","series-title":"Foundations of rule learning","author":"F\u00fcrnkranz","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.041_bib0014","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1613\/jair.1089","article-title":"Expert-guided subgroup discovery: Methodology and application","volume":"17","author":"Gamberger","year":"2002","journal-title":"Journal of Artificial Intelligence Research"},{"key":"10.1016\/j.eswa.2017.03.041_bib0015","series-title":"Proceedings of principles of data mining and knowledge discovery, 4th European conference, PKDD 2000","first-page":"34","article-title":"Confirmation rule sets","author":"Gamberger","year":"2000"},{"issue":"2","key":"10.1016\/j.eswa.2017.03.041_bib0016","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1007\/s10618-009-0136-3","article-title":"On subgroup discovery in numerical domains","volume":"19","author":"Grosskreutz","year":"2009","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.041_bib0017","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The WEKA data mining software: An update","volume":"11","author":"Hall","year":"2009","journal-title":"SIGKDD Explorations"},{"issue":"3","key":"10.1016\/j.eswa.2017.03.041_bib0018","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1007\/s10618-009-0131-8","article-title":"Furia: An algorithm for unordered fuzzy rule induction","volume":"19","author":"H\u00fchn","year":"2009","journal-title":"Data Mining and Knowledge Discovery"},{"key":"10.1016\/j.eswa.2017.03.041_bib0019","series-title":"Proceedings of the 2009 SIAM international conference on data mining","first-page":"329","article-title":"A re-evaluation of the over-searching phenomenon in inductive rule learning.","author":"Janssen","year":"2009"},{"key":"10.1016\/j.eswa.2017.03.041_bib0020","series-title":"Advances in intelligent data analysis v, 5th international symposium on intelligent data analysis, IDA","first-page":"230","article-title":"APRIORI-SD: adapting association rule learning to subgroup discovery","author":"Kav\u0161ek","year":"2003"},{"key":"10.1016\/j.eswa.2017.03.041_bib0021","series-title":"Advances in knowledge discovery and data mining","first-page":"249","article-title":"Explora: A multipattern and multistrategy discovery assistant","author":"Kl\u00f6sgen","year":"1996"},{"key":"10.1016\/j.eswa.2017.03.041_bib0022","first-page":"377","article-title":"Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining","volume":"10","author":"Kralj Novak","year":"2009","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.03.041_bib0023","series-title":"Proceedings of the 8th international multiconference information society","first-page":"220","article-title":"Experimental comparison of three subgroup discovery algorithms: Analysing brain ischemia data","author":"Kralj Novak","year":"2005"},{"key":"10.1016\/j.eswa.2017.03.041_bib0024","series-title":"Proceedings of machine learning and knowledge discovery in databases - European conference, ECML PKDD 2012","first-page":"816","article-title":"ClowdFlows: A cloud based scientific workflow platform","author":"Kranjc","year":"2012"},{"key":"10.1016\/j.eswa.2017.03.041_bib0025","first-page":"153","article-title":"Subgroup discovery with CN2-SD","volume":"5","author":"Lavra\u010d","year":"2004","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.eswa.2017.03.041_bib0026","series-title":"Proceedings of the 12th international conference on inductive logic programming","first-page":"149","article-title":"RSD: Relational subgroup discovery through first-order feature construction","author":"Lavra\u010d","year":"2002"},{"key":"10.1016\/j.eswa.2017.03.041_bib0027","unstructured":"Lichman, M. (2013). UCI machine learning repository."},{"key":"10.1016\/j.eswa.2017.03.041_bib0028","series-title":"Proceedings of the fifth international symposium on information processing","article-title":"On the quasi-minimal solution of the general covering problem","author":"Michalski","year":"1969"},{"issue":"1","key":"10.1016\/j.eswa.2017.03.041_bib0029","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s10618-013-0339-5","article-title":"To tune or not to tune: Rule evaluation for metaheuristic-based sequential covering algorithms","volume":"29","author":"Minnaert","year":"2015","journal-title":"Data Mining and Knowledge Discovery"},{"issue":"2","key":"10.1016\/j.eswa.2017.03.041_bib0030","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/0004-3702(82)90040-6","article-title":"Generalization as search","volume":"18","author":"Mitchell","year":"1982","journal-title":"Artificial Intelligence"},{"issue":"24","key":"10.1016\/j.eswa.2017.03.041_bib0031","doi-asserted-by":"crossref","first-page":"9468","DOI":"10.1016\/j.eswa.2015.07.076","article-title":"Addressing imbalanced data with argument based rule learning","volume":"42","author":"Napierala","year":"2015","journal-title":"Expert Systems with Applications"},{"issue":"4","key":"10.1016\/j.eswa.2017.03.041_bib0032","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1109\/TEVC.2002.802452","article-title":"Data mining with an ant colony optimization algorithm","volume":"6","author":"Parpinelli","year":"2002","journal-title":"IEEE Transactions on Evolutionary Computation"},{"issue":"16","key":"10.1016\/j.eswa.2017.03.041_bib0033","doi-asserted-by":"crossref","first-page":"7524","DOI":"10.1016\/j.eswa.2014.06.017","article-title":"Handling numeric attributes with ant colony based classifier for medical decision making","volume":"41","author":"Pi\u010dulin","year":"2014","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.03.041_bib0034","series-title":"Proceedings of the 14th international joint conference on artificial intelligence, IJCAI\u201995","first-page":"1019","article-title":"Oversearching and layered search in empirical learning","volume":"2","author":"Quinlan","year":"1995"},{"key":"10.1016\/j.eswa.2017.03.041_bib0035","article-title":"Learning efficient classification procedures and their application to chess end games","author":"Quinlan","year":"1983","journal-title":"Machine Learning"},{"key":"10.1016\/j.eswa.2017.03.041_bib0036","series-title":"Proceedings of machine learning: European conference on machine learning - ECML 1993","first-page":"3","article-title":"FOIL: A midterm report","author":"Quinlan","year":"1993"},{"key":"10.1016\/j.eswa.2017.03.041_bib0037","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eswa.2016.04.003","article-title":"Improving the performance of inductive learning classifiers through the presentation order of the training patterns","volume":"58","author":"Ruz","year":"2016","journal-title":"Expert Systems with Applications"},{"issue":"6","key":"10.1016\/j.eswa.2017.03.041_bib0038","doi-asserted-by":"crossref","first-page":"6748","DOI":"10.1016\/j.eswa.2010.11.059","article-title":"Induction and pruning of classification rules for prediction of microseismic hazards in coal mines","volume":"38","author":"Sikora","year":"2011","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.eswa.2017.03.041_bib0039","series-title":"Proceedings of machine learning and knowledge discovery in databases - European conference, ECML PKDD 2014","first-page":"114","article-title":"Separating rule refinement and rule selection heuristics in inductive rule learning","author":"Stecher","year":"2014"},{"key":"10.1016\/j.eswa.2017.03.041_bib0040","series-title":"Multi-view approach to Parkinson\u2019s disease quality of life data analysis","author":"Valmarska","year":"2016"},{"key":"10.1016\/j.eswa.2017.03.041_bib0041","series-title":"Proceedings of the 18th international multiconference information society","article-title":"Inverted heuristics in subgroup discovery","author":"Valmarska","year":"2015"},{"key":"10.1016\/j.eswa.2017.03.041_bib0042","series-title":"Proceedings of the 16th international conference discovery science, DS 2013","first-page":"294","article-title":"Semantic data mining of financial news articles","author":"Vavpeti\u010d","year":"2013"},{"key":"10.1016\/j.eswa.2017.03.041_bib0043","series-title":"Proceedings of the first European symposium on principles of data mining and knowledge discovery, PKDD 1997","first-page":"78","article-title":"An algorithm for multi-relational discovery of subgroups","author":"Wrobel","year":"1997"},{"issue":"3","key":"10.1016\/j.eswa.2017.03.041_bib0044","first-page":"197","article-title":"Quickfoil: Scalable inductive logic programming","volume":"8","author":"Zeng","year":"2014","journal-title":"Proceedings of Very Large Databases Conference"}],"container-title":["Expert Systems with Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417301914?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0957417417301914?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,20]],"date-time":"2019-09-20T01:16:54Z","timestamp":1568942214000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0957417417301914"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":44,"alternative-id":["S0957417417301914"],"URL":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.041","relation":{},"ISSN":["0957-4174"],"issn-type":[{"value":"0957-4174","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Refinement and selection heuristics in subgroup discovery and classification rule learning","name":"articletitle","label":"Article Title"},{"value":"Expert Systems with Applications","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.eswa.2017.03.041","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}